TY - JOUR
T1 - 4-Hydroxy-1,2,5-oxadiazol-3-yl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and molecular pharmacological characterization at ionotropic glutamate receptors of compounds related to glutamate and its homologues
AU - Lolli, Marco L.
AU - Giordano, Cecilia
AU - Pickering, Darryl S.
AU - Rolando, Barbara
AU - Hansen, Kasper B.
AU - Foti, Antonio
AU - Contreras-Sanz, Alberto
AU - Amir, Ahmad
AU - Fruttero, Roberta
AU - Gasco, Alberto
AU - Nielsen, Birgitte
AU - Johansen, Tommy N.
PY - 2010/5/27
Y1 - 2010/5/27
N2 - In order to investigate the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety as a carboxylic acid bioisoster at ionotropic glutamate receptors (iGluRs), a series of acidic α-aminocarboxylic acids in which the distal carboxy group was replaced by the 4-hydroxy-1,2,5-oxadiazol-3-yl group was synthesized. Ionization constants were determined. All target compounds, except the Asp analogue 12, were resolved using chiral HPLC. Whereas 12 showed good affinity exclusively at NMDA receptors, the Glu analogue, (+)-10, was an unselective, though potent AMPA receptor preferring agonist (EC50 = 10 μM at iGluR2) showing only low stereoselectivity. The two higher Glu homologues, (+)-15 and (+)-18, turned out to be weak agonists at iGluR2 as well as weak antagonists at NR1/NR2A, whereas the corresponding (-)-isomers were selective NR1/NR2A antagonists with somewhat higher potency. The results proved the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety to be a useful bioisoster at all three classes of iGluRs, capable of being integrated into agonists as well as antagonists.
AB - In order to investigate the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety as a carboxylic acid bioisoster at ionotropic glutamate receptors (iGluRs), a series of acidic α-aminocarboxylic acids in which the distal carboxy group was replaced by the 4-hydroxy-1,2,5-oxadiazol-3-yl group was synthesized. Ionization constants were determined. All target compounds, except the Asp analogue 12, were resolved using chiral HPLC. Whereas 12 showed good affinity exclusively at NMDA receptors, the Glu analogue, (+)-10, was an unselective, though potent AMPA receptor preferring agonist (EC50 = 10 μM at iGluR2) showing only low stereoselectivity. The two higher Glu homologues, (+)-15 and (+)-18, turned out to be weak agonists at iGluR2 as well as weak antagonists at NR1/NR2A, whereas the corresponding (-)-isomers were selective NR1/NR2A antagonists with somewhat higher potency. The results proved the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety to be a useful bioisoster at all three classes of iGluRs, capable of being integrated into agonists as well as antagonists.
UR - http://www.scopus.com/inward/record.url?scp=77952721574&partnerID=8YFLogxK
U2 - 10.1021/jm1001452
DO - 10.1021/jm1001452
M3 - Article
C2 - 20408529
AN - SCOPUS:77952721574
SN - 0022-2623
VL - 53
SP - 4110
EP - 4118
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
IS - 10
ER -