TY - JOUR
T1 - A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush)
AU - Smith, Seth R.
AU - Normandeau, Eric
AU - Djambazian, Haig
AU - Nawarathna, Pubudu M.
AU - Berube, Pierre
AU - Muir, Andrew M.
AU - Ragoussis, Jiannis
AU - Penney, Chantelle M.
AU - Scribner, Kim T.
AU - Luikart, Gordon
AU - Wilson, Chris C.
AU - Bernatchez, Louis
N1 - Publisher Copyright:
© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd
PY - 2022/2
Y1 - 2022/2
N2 - Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) – a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.
AB - Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) – a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85112390434&partnerID=8YFLogxK
U2 - 10.1111/1755-0998.13483
DO - 10.1111/1755-0998.13483
M3 - Article
C2 - 34351050
AN - SCOPUS:85112390434
SN - 1755-098X
VL - 22
SP - 679
EP - 694
JO - Molecular Ecology Resources
JF - Molecular Ecology Resources
IS - 2
ER -