TY - JOUR
T1 - A currency for offsetting energy development impacts
T2 - Horse-trading sage-grouse on the open market
AU - Doherty, Kevin E.
AU - Naugle, David E.
AU - Evans, Jeffrey S.
N1 - Funding Information:
Energy independence is an issue of national security in the U.S. As this nation increases domestic production to reduce its dependency on foreign sources one thing is clear—increased wildlife impacts are inevitable. Policies to reduce impacts should include all aspects of the mitigation hierarchy (avoid, minimize, restore and offset). Biodiversity offsets are a necessary part of conservation after preceding steps in the mitigation hierarchy have been exhausted. Offsets represent a partnership between industry and conservation and provide a proactive solution for accommodating development of domestic energy resources. The concept of offsets is a part of the culture of mining and electrical transmission industries but is still a relatively new and largely unexplored topic in other energy development sectors. The National Environmental Policy Act or ‘NEPA process’ readily provides for off-site mitigation despite the current novelty of biodiversity offsets in the energy arena. Most importantly, offsets provide a partial solution for funding large-scale conservation while the option to do so is still available.
PY - 2010
Y1 - 2010
N2 - Background: Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits. Methodology/Principal Findings: Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1-12 wells per 32.2 km2. Above this threshold lek losses were 2-5 times greater inside than outside of development and bird abundance at remaining leks declined by 232 to 277%. Findings reiterated the importance of timelags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments. Conclusions/Significance: Documented impacts relative to development intensity can be used to forecast biological tradeoffs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets. Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts.
AB - Background: Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits. Methodology/Principal Findings: Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1-12 wells per 32.2 km2. Above this threshold lek losses were 2-5 times greater inside than outside of development and bird abundance at remaining leks declined by 232 to 277%. Findings reiterated the importance of timelags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments. Conclusions/Significance: Documented impacts relative to development intensity can be used to forecast biological tradeoffs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets. Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts.
UR - http://www.scopus.com/inward/record.url?scp=77956402100&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0010339
DO - 10.1371/journal.pone.0010339
M3 - Article
C2 - 20442770
AN - SCOPUS:77956402100
SN - 1932-6203
VL - 5
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e10339
ER -