TY - JOUR
T1 - A stochastic detection and retrieval model for the study of metacognition
AU - Jang, Yoonhee
AU - Wallsten, Thomas S.
AU - Huber, David E.
PY - 2012
Y1 - 2012
N2 - We present a signal detection-like model termed the stochastic detection and retrieval model (SDRM) for use in studying metacognition. Focusing on paradigms that relate retrieval (e.g., recall or recognition) and confidence judgments, the SDRM measures (1) variance in the retrieval process, (2) variance in the confidence process, (3) the extent to which different sources of information underlie each response, (4) simple bias (i.e., increasing or decreasing confidence criteria across conditions), and (5) metacognitive bias (i.e., contraction or expansion of the confidence criteria across conditions). In the metacognition literature, gamma correlations have been used to measure the accuracy of confidence judgments. However, gamma cannot distinguish between the first 3 attributes, and it cannot measure either form of bias. In contrast, the SDRM can distinguish among the attributes, and it can measure both forms of bias. In this way, the SDRM can be used to test competing process theories by determining the attribute that best accounts for a change across conditions. To demonstrate the SDRM's usefulness, we investigated judgments of learning (JOLs) followed by cued-recall. Through a series of nested and non-nested model comparisons applied to a new experiment, the SDRM determined that a reduction in variance during the confidence process is the most likely explanation of the delayed-JOL effect, and a stronger relation between information underlying JOLs and recall is the most likely explanation of the testing-JOL effect. Following a brief discussion of implications for JOL theories, we conclude with a broader discussion of how the SDRM can benefit metacognition research.
AB - We present a signal detection-like model termed the stochastic detection and retrieval model (SDRM) for use in studying metacognition. Focusing on paradigms that relate retrieval (e.g., recall or recognition) and confidence judgments, the SDRM measures (1) variance in the retrieval process, (2) variance in the confidence process, (3) the extent to which different sources of information underlie each response, (4) simple bias (i.e., increasing or decreasing confidence criteria across conditions), and (5) metacognitive bias (i.e., contraction or expansion of the confidence criteria across conditions). In the metacognition literature, gamma correlations have been used to measure the accuracy of confidence judgments. However, gamma cannot distinguish between the first 3 attributes, and it cannot measure either form of bias. In contrast, the SDRM can distinguish among the attributes, and it can measure both forms of bias. In this way, the SDRM can be used to test competing process theories by determining the attribute that best accounts for a change across conditions. To demonstrate the SDRM's usefulness, we investigated judgments of learning (JOLs) followed by cued-recall. Through a series of nested and non-nested model comparisons applied to a new experiment, the SDRM determined that a reduction in variance during the confidence process is the most likely explanation of the delayed-JOL effect, and a stronger relation between information underlying JOLs and recall is the most likely explanation of the testing-JOL effect. Following a brief discussion of implications for JOL theories, we conclude with a broader discussion of how the SDRM can benefit metacognition research.
KW - Confidence judgment accuracy
KW - Criterion variability
KW - Judgments of learning
KW - Metacognition
KW - Signal detection theory
UR - http://www.scopus.com/inward/record.url?scp=84859779054&partnerID=8YFLogxK
U2 - 10.1037/a0025960
DO - 10.1037/a0025960
M3 - Article
C2 - 22059901
AN - SCOPUS:84859779054
SN - 0033-295X
VL - 119
SP - 186
EP - 200
JO - Psychological Review
JF - Psychological Review
IS - 1
ER -