Abstract
Background: Exposure to household air pollution generated as a result of cooking and heating is a leading contributor to global disease. The effects of cookstove-generated air pollution on adult lung function, however, remain uncertain. Objectives: We investigated acute responses in lung function following controlled exposures to cookstove-generated air pollution. Methods: We recruited 48 healthy adult volunteers to undergo six two-hour treatments: a filtered-air control and emissions from five different stoves with fine particulate matter (PM2.5) targets from 10 to 500 µg/m3. Spirometry was conducted prior to exposure and immediately, and three and 24 h post-exposure. Mixed-effect models were used to estimate differences in post-exposure lung function for stove treatments versus control. Results: Immediately post-exposure, lung function was lower compared to the control for the three highest PM2.5-level stoves. The largest differences were for the fan rocket stove (target 250 µg/m3; forced vital capacity (FVC): −60 mL, 95% confidence interval (95% CI) -135, 15; forced expiratory volume (FEV1): −51 mL, 95% CI -117, 16; mid-expiratory flow (FEF25–75): −116 mL/s, 95% CI -239, 8). At 3 h post-exposure, lung function was lower compared to the control for all stove treatments; effects were of similar magnitude for all stoves. At 24 h post-exposure, results were consistent with a null association for FVC and FEV1; FEF25–75 was lower relative to the control for the gasifier, fan rocket, and three stone fire. Conclusions: Patterns suggesting short-term decreases in lung function follow from exposure to cookstove air pollution even for stove exposures with low PM2.5 levels.
Original language | English |
---|---|
Pages (from-to) | 115-123 |
Number of pages | 9 |
Journal | Inhalation Toxicology |
Volume | 32 |
Issue number | 3 |
DOIs | |
State | Published - Feb 23 2020 |
Keywords
- Air pollution
- FEV1
- FVC
- controlled exposure
- cookstoves
- spirometry