Abstract
Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 μg/m3, liquefied petroleum gas = 10 μg/m3, gasifier = 35 μg/m3, fan rocket = 100 μg/m3, rocket elbow = 250 μg/m3, three stone fire = 500 μg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: −0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: −0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.
Original language | English |
---|---|
Article number | 108831 |
Journal | Environmental Research |
Volume | 180 |
DOIs | |
State | Published - Jan 2020 |
Keywords
- Air pollution
- Arterial stiffness
- Biomass burning
- Central hemodynamics
- Epidemiology