TY - JOUR
T1 - Applications of real-time thermoregulatory models to occupational heat stress
T2 - Validation with military and civilian field studies
AU - Yokota, Miyo
AU - Berglund, Larry G.
AU - Santee, William R.
AU - Buller, Mark J.
AU - Karis, Anthony J.
AU - Roberts, Warren S.
AU - Cuddy, John S.
AU - Ruby, Brent C.
AU - Hoyt, Reed W.
PY - 2012/7
Y1 - 2012/7
N2 - Yokota, M, Berglund, LG, Santee, WR, Buller, MJ, Karis, AJ, Roberts, WS, Cuddy, JS, Ruby, BC, and Hoyt, RW. Applications of real-time thermoregulatory models to occupational heat stress: Validation with military and civilian field studies. J Strength Cond Res 26(7): S37-S44, 2012. A real-time thermoregulatory model using noninvasive measurements as inputs was developed for predicting physiological responses of individuals working long hours. The purpose of the model is to reduce heat-related injuries and illness by predicting the physiological effects of thermal stress on individuals while working. The model was originally validated mainly by using data from controlled laboratory studies. This study expands the validation of the model with field data from 26 test volunteers, including US Marines, Australian soldiers, and US wildland fire fighters (WLFF). These data encompass a range of environmental conditions (air temperature: 19-30°C; relative humidity: 25-63%) and clothing (i.e., battle dress uniform, chemical-biological protective garment, WLFF protective gear), while performing diverse activities (e.g., marksmanship, marching, extinguishing fires, and digging). The predicted core temperatures (T c), calculated using environmental, anthropometric, clothing, and heart rate measures collected in the field as model inputs, were compared with subjects' T c collected with ingested telemetry temperature pills. Root mean standard deviation (RMSD) values, used for goodness of fit comparisons, indicated that overall, the model predictions were in close agreement with the measured values (grand mean of RMSD: 0.15-0.38°C). Although the field data showed more individual variability in the physiological data relative to more controlled laboratory studies, this study showed that the performance of the model was adequate.
AB - Yokota, M, Berglund, LG, Santee, WR, Buller, MJ, Karis, AJ, Roberts, WS, Cuddy, JS, Ruby, BC, and Hoyt, RW. Applications of real-time thermoregulatory models to occupational heat stress: Validation with military and civilian field studies. J Strength Cond Res 26(7): S37-S44, 2012. A real-time thermoregulatory model using noninvasive measurements as inputs was developed for predicting physiological responses of individuals working long hours. The purpose of the model is to reduce heat-related injuries and illness by predicting the physiological effects of thermal stress on individuals while working. The model was originally validated mainly by using data from controlled laboratory studies. This study expands the validation of the model with field data from 26 test volunteers, including US Marines, Australian soldiers, and US wildland fire fighters (WLFF). These data encompass a range of environmental conditions (air temperature: 19-30°C; relative humidity: 25-63%) and clothing (i.e., battle dress uniform, chemical-biological protective garment, WLFF protective gear), while performing diverse activities (e.g., marksmanship, marching, extinguishing fires, and digging). The predicted core temperatures (T c), calculated using environmental, anthropometric, clothing, and heart rate measures collected in the field as model inputs, were compared with subjects' T c collected with ingested telemetry temperature pills. Root mean standard deviation (RMSD) values, used for goodness of fit comparisons, indicated that overall, the model predictions were in close agreement with the measured values (grand mean of RMSD: 0.15-0.38°C). Although the field data showed more individual variability in the physiological data relative to more controlled laboratory studies, this study showed that the performance of the model was adequate.
KW - Field training
KW - Heat strain
KW - Marines
KW - Soldiers
KW - Thermal regulatory model
KW - Wildland fire fighters
UR - http://www.scopus.com/inward/record.url?scp=84863653400&partnerID=8YFLogxK
U2 - 10.1519/JSC.0b013e31825ceba4
DO - 10.1519/JSC.0b013e31825ceba4
M3 - Article
C2 - 22614223
AN - SCOPUS:84863653400
SN - 1064-8011
VL - 26
SP - S37-S44
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - SUPPL. 2
ER -