TY - JOUR
T1 - Association of exposure to polycyclic aromatic hydrocarbons and heavy metals with thyroid hormones in general adult population and potential mechanisms
AU - Kim, Min Joo
AU - Kim, Sunmi
AU - Choi, Sohyeon
AU - Lee, Inae
AU - Moon, Min Kyong
AU - Choi, Kyungho
AU - Park, Young Joo
AU - Cho, Yoon Hee
AU - Kwon, Young Min
AU - Yoo, Jiyoung
AU - Cheon, Gi Jeong
AU - Park, Jeongim
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/25
Y1 - 2021/3/25
N2 - Air pollution and fuel emissions are the common sources of human exposure to polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Several studies have suggested potential associations between PAHs/heavy metals and thyroid hormones, however, reports have been inconsistent. In this study, we employed a subpopulation of the adults (n = 1254) who participated in the Korean National Environmental Health Survey 2015–2017, and investigated the association of PAHs and major heavy metals with thyroid hormones, and explored the underlying mechanisms of thyroid disruption. Four PAH metabolites and three heavy metals of lead (Pb), mercury (Hg), and cadmium (Cd) were measured either in urine or in total blood. In addition, thyroid hormones (T3 and T4), TSH, thyroxine-binding globulin (TBG), and thyroid autoantibodies were measured, and peripheral deiodinase activity (GD) and thyroid's secretory capacity (GT) were calculated. Urinary Hg was negatively associated with total T3 in both males and females, while it was positively associated with total T4 among females only. Urinary Hg was related to decreased GD and increased GT in both sexes. In contrast, urinary Cd was positively associated with total T3 and GD in both male and female populations. Urinary Cd also showed a positive association with thyroid autoantibodies, but only in males. A multi-factor model considering co-exposure to multiple chemicals also resulted in similar associations. Among the measured PAH metabolites, only urinary 1-hydroxypyrene showed a negative association with total T3 in males. However, this association was marginal, and disappeared in a multi-chemical model. The present observations are suggestive that exposures to Hg and Cd might disrupt thyroid hormones, possibly through an alteration of deiodinase activity. Association of PAH exposure with thyroid hormone appears to be insignificant.
AB - Air pollution and fuel emissions are the common sources of human exposure to polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Several studies have suggested potential associations between PAHs/heavy metals and thyroid hormones, however, reports have been inconsistent. In this study, we employed a subpopulation of the adults (n = 1254) who participated in the Korean National Environmental Health Survey 2015–2017, and investigated the association of PAHs and major heavy metals with thyroid hormones, and explored the underlying mechanisms of thyroid disruption. Four PAH metabolites and three heavy metals of lead (Pb), mercury (Hg), and cadmium (Cd) were measured either in urine or in total blood. In addition, thyroid hormones (T3 and T4), TSH, thyroxine-binding globulin (TBG), and thyroid autoantibodies were measured, and peripheral deiodinase activity (GD) and thyroid's secretory capacity (GT) were calculated. Urinary Hg was negatively associated with total T3 in both males and females, while it was positively associated with total T4 among females only. Urinary Hg was related to decreased GD and increased GT in both sexes. In contrast, urinary Cd was positively associated with total T3 and GD in both male and female populations. Urinary Cd also showed a positive association with thyroid autoantibodies, but only in males. A multi-factor model considering co-exposure to multiple chemicals also resulted in similar associations. Among the measured PAH metabolites, only urinary 1-hydroxypyrene showed a negative association with total T3 in males. However, this association was marginal, and disappeared in a multi-chemical model. The present observations are suggestive that exposures to Hg and Cd might disrupt thyroid hormones, possibly through an alteration of deiodinase activity. Association of PAH exposure with thyroid hormone appears to be insignificant.
KW - Cadmium
KW - Iodothyronine deiodinase
KW - Lead
KW - Mercury
KW - Polycyclic aromatic hydrocarbons
KW - Thyroid hormones
UR - http://www.scopus.com/inward/record.url?scp=85098120045&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.144227
DO - 10.1016/j.scitotenv.2020.144227
M3 - Article
C2 - 33373756
AN - SCOPUS:85098120045
SN - 0048-9697
VL - 762
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 144227
ER -