Astrocyte-Specific regulation of hMeCP2 expression in Drosophila

David L. Hess-Homeier, Chia Yu Fan, Tarun Gupta, Ann Shyn Chiang, Sarah J. Certel

Research output: Contribution to journalArticlepeer-review

Abstract

Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2) either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT), MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined the effects of elevated MeCP2 levels on microcircuits by expressing human MeCP2 (hMeCP2) in astrocytes and distinct subsets of amine neurons including dopamine and octopamine (OA) neurons. Depending on the celltype, hMeCP2 expression reduced sleep levels, altered daytime/ nighttime sleep patterns, and generated sleep maintenance deficits. Second, we identified a 498 base pair region of the MeCP2e2 isoform that is targeted for regulation in distinct subsets of astrocytes. Levels of the full-length hMeCP2e2 and mutant RTT R106W protein decreased in astrocytes in a temporally and spatially regulated manner. In contrast, expression of the deletion D166 hMeCP2 protein was not altered in the entire astrocyte population. qPCR experiments revealed a reduction in full-length hMeCP2e2 transcript levels suggesting transgenic hMeCP2 expression is regulated at the transcriptional level. Given the phenotypic complexities that are caused by alterations in MeCP2 levels, our results provide insight into distinct cellular mechanisms that control MeCP2 expression and link microcircuit abnormalities with defined behavioral deficits.

Original languageEnglish
Pages (from-to)1011-1019
Number of pages9
JournalBiology Open
Volume3
Issue number11
DOIs
StatePublished - Nov 15 2014

Keywords

  • Astrocytes
  • Drosophila
  • MeCP2
  • Rett syndrome
  • Sleep

Fingerprint

Dive into the research topics of 'Astrocyte-Specific regulation of hMeCP2 expression in Drosophila'. Together they form a unique fingerprint.

Cite this