TY - JOUR
T1 - Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A
AU - Harper, Joel T.
AU - Humphrey, Neil F.
AU - Greenwood, Mark C.
PY - 2002
Y1 - 2002
N2 - Observations of the motion and basal conditions of Worthington Glacier, Alaska, U.S.A., during late-winter and spring melt seasons revealed no evidence of a relationship between water pressure and sliding velocity. Measurements included borehole water levels (used as a proxy for basal water pressure), surface velocity, englacial deformation, sliding velocity, and time-lapse videography of subglacial water flow and bed characteristics. The boreholes were spaced 10-15 m apart; six were instrumented in 1997, and five in 1998. In late winter, the water-pressure field showed spatially synchronous fluctuations with a diurnal cycle. The glacier's motion was relatively slow and non-cyclic. In spring, the motion was characterized by rapid, diurnally varying sliding. The basal water pressure displayed no diurnal signal, but showed high-magnitude fluctuations and often strong gradients between holes. This transition in character of the basal water-pressure field may represent a seasonal evolution of the drainage system from linked cavities to a network of isolated patches and conduits. These changes occurred as the glacier was undergoing a seasonal-velocity peak. The apparent lack of correlation between sliding velocity and water pressure suggests that local-scale water pressure does not directly control sliding during late winter or early in the melt season.
AB - Observations of the motion and basal conditions of Worthington Glacier, Alaska, U.S.A., during late-winter and spring melt seasons revealed no evidence of a relationship between water pressure and sliding velocity. Measurements included borehole water levels (used as a proxy for basal water pressure), surface velocity, englacial deformation, sliding velocity, and time-lapse videography of subglacial water flow and bed characteristics. The boreholes were spaced 10-15 m apart; six were instrumented in 1997, and five in 1998. In late winter, the water-pressure field showed spatially synchronous fluctuations with a diurnal cycle. The glacier's motion was relatively slow and non-cyclic. In spring, the motion was characterized by rapid, diurnally varying sliding. The basal water pressure displayed no diurnal signal, but showed high-magnitude fluctuations and often strong gradients between holes. This transition in character of the basal water-pressure field may represent a seasonal evolution of the drainage system from linked cavities to a network of isolated patches and conduits. These changes occurred as the glacier was undergoing a seasonal-velocity peak. The apparent lack of correlation between sliding velocity and water pressure suggests that local-scale water pressure does not directly control sliding during late winter or early in the melt season.
UR - http://www.scopus.com/inward/record.url?scp=0036060177&partnerID=8YFLogxK
U2 - 10.3189/172756502781831629
DO - 10.3189/172756502781831629
M3 - Article
AN - SCOPUS:0036060177
SN - 0022-1430
VL - 48
SP - 42
EP - 50
JO - Journal of Glaciology
JF - Journal of Glaciology
IS - 160
ER -