TY - JOUR
T1 - Bioassessment of an appalachian headwater stream influenced by an abandoned arsenic mine
AU - Valenti, Theodore W.
AU - Chaffin, Jake L.
AU - Cherry, Donald S.
AU - Schreiber, Madeline E.
AU - Valett, H. Maurice
AU - Charles, Megan
PY - 2005/11
Y1 - 2005/11
N2 - Recent debate concerning the modification of safe drinking water standards for arsenic (As) has led to increased awareness of the risks As poses to both humans and the environment. However, few studies have examined the effects of As on the diversity and composition of aquatic assemblages in streams. Benthic macroinvertebrate surveys, chemical analysis of water column and sediment, and laboratory toxicity tests were conducted to assess effects of an abandoned As mine on a headwater stream, and to determine the primary component of toxicity. The average 48-hr LC50 value for Daphnia magna was 4316 μg As/L, and the average 96-hr LC50 value for Lepidostoma spp. was 2138 μg As/L. Reproduction was significantly reduced for D. magna at concentrations ≥312 μg As/L in water column laboratory bioassays, and for treatments in bioassays with sediments containing elevated As (≥2630 mg/kg). These results support the findings of the in-stream benthic macroinvertebrate survey as the density and percent Ephemeroptera + Plecoptera, + Trichoptera (EPT) were substantially lower at sites downstream of the mine compared to upstream reference sites. Results of bioassays comparing the toxicity of As-contaminated site water and upstream reference water spiked with As salts suggest that As is the primary component of toxicity impacting the stream. Measured As concentrations at downstream sites were above the recommended Criterion Maximum Concentration of 340 μg As/L and Criterion Continuous Concentration of 150 μg As/L for protection of aquatic life published by the United States Environmental Protection Agency. At the study site, elevated As concentrations likely prevent recruitment of benthic macroinvertebrates and recovery of the perturbed headwater stream.
AB - Recent debate concerning the modification of safe drinking water standards for arsenic (As) has led to increased awareness of the risks As poses to both humans and the environment. However, few studies have examined the effects of As on the diversity and composition of aquatic assemblages in streams. Benthic macroinvertebrate surveys, chemical analysis of water column and sediment, and laboratory toxicity tests were conducted to assess effects of an abandoned As mine on a headwater stream, and to determine the primary component of toxicity. The average 48-hr LC50 value for Daphnia magna was 4316 μg As/L, and the average 96-hr LC50 value for Lepidostoma spp. was 2138 μg As/L. Reproduction was significantly reduced for D. magna at concentrations ≥312 μg As/L in water column laboratory bioassays, and for treatments in bioassays with sediments containing elevated As (≥2630 mg/kg). These results support the findings of the in-stream benthic macroinvertebrate survey as the density and percent Ephemeroptera + Plecoptera, + Trichoptera (EPT) were substantially lower at sites downstream of the mine compared to upstream reference sites. Results of bioassays comparing the toxicity of As-contaminated site water and upstream reference water spiked with As salts suggest that As is the primary component of toxicity impacting the stream. Measured As concentrations at downstream sites were above the recommended Criterion Maximum Concentration of 340 μg As/L and Criterion Continuous Concentration of 150 μg As/L for protection of aquatic life published by the United States Environmental Protection Agency. At the study site, elevated As concentrations likely prevent recruitment of benthic macroinvertebrates and recovery of the perturbed headwater stream.
UR - http://www.scopus.com/inward/record.url?scp=27544459591&partnerID=8YFLogxK
U2 - 10.1007/s00244-004-0222-x
DO - 10.1007/s00244-004-0222-x
M3 - Article
C2 - 16205987
AN - SCOPUS:27544459591
SN - 0090-4341
VL - 49
SP - 488
EP - 496
JO - Archives of Environmental Contamination and Toxicology
JF - Archives of Environmental Contamination and Toxicology
IS - 4
ER -