TY - JOUR
T1 - Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra
AU - Angot, Hélène
AU - Mcerlean, Katelyn
AU - Hu, Lu
AU - Millet, Dylan B.
AU - Hueber, Jacques
AU - Cui, Kaixin
AU - Moss, Jacob
AU - Wielgasz, Catherine
AU - Milligan, Tyler
AU - Ketcherside, Damien
AU - Syndonia Bret-Harte, M.
AU - Helmig, Detlev
N1 - Publisher Copyright:
© Author(s) 2020.
PY - 2020/12/9
Y1 - 2020/12/9
N2 - Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatileorganic- compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38′ N, 149°36′ W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (∼ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 μgCm-2 h-1 (mean of 85 μgCm-2 h-1) and monoterpene emission rates remained, on average, below 1 μgCm-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215% emission increase in response to a 3-4 °C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30 °C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.
AB - Rapid Arctic warming, a lengthening growing season, and the increasing abundance of biogenic volatileorganic- compound-emitting shrubs are all anticipated to increase atmospheric biogenic volatile organic compounds (BVOCs) in the Arctic atmosphere, with implications for atmospheric oxidation processes and climate feedbacks. Quantifying these changes requires an accurate understanding of the underlying processes driving BVOC emissions in the Arctic. While boreal ecosystems have been widely studied, little attention has been paid to Arctic tundra environments. Here, we report terpenoid (isoprene, monoterpenes, and sesquiterpenes) ambient mixing ratios and emission rates from key dominant vegetation species at Toolik Field Station (TFS; 68°38′ N, 149°36′ W) in northern Alaska during two back-to-back field campaigns (summers of 2018 and 2019) covering the entire growing season. Isoprene ambient mixing ratios observed at TFS fell within the range of values reported in the Eurasian taiga (0-500 parts per trillion by volume - pptv), while monoterpene and sesquiterpene ambient mixing ratios were respectively close to and below the instrumental quantification limit (∼ 2 pptv). Isoprene surface emission rates ranged from 0.2 to 2250 μgCm-2 h-1 (mean of 85 μgCm-2 h-1) and monoterpene emission rates remained, on average, below 1 μgCm-2 h-1 over the course of the study. We further quantified the temperature dependence of isoprene emissions from local vegetation, including Salix spp. (a known isoprene emitter), and compared the results to predictions from the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Our observations suggest a 180 %-215% emission increase in response to a 3-4 °C warming, and the MEGAN2.1 temperature algorithm exhibits a close fit with observations for enclosure temperatures in the 0-30 °C range. The data presented here provide a baseline for investigating future changes in the BVOC emission potential of the under-studied Arctic tundra environment.
UR - http://www.scopus.com/inward/record.url?scp=85097592336&partnerID=8YFLogxK
U2 - 10.5194/bg-17-6219-2020
DO - 10.5194/bg-17-6219-2020
M3 - Article
AN - SCOPUS:85097592336
SN - 1726-4170
VL - 17
SP - 6219
EP - 6236
JO - Biogeosciences
JF - Biogeosciences
IS - 23
M1 - 323
ER -