BIOME-BGC simulations of stand hydrologic processes for BOREAS

John S. Kimball, Michael A. White, Steve W. Running

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

BIOME-BGC is a general ecosystem model designed to simulate hydrologic and biogeochemical processes across multiple scales. The objectives of this investigation were to compare BIOME-BGC estimates of hydrologic processes with observed data for different boreal forest stands and investigate factors that control simulated water fluxes. Model results explained 62 and 98% of the respective variances in observed daily evapotranspiration and soil water; simulations of the onset of spring thaw and the dates of snowpack disappearance and accumulation also generally tracked observations. Differences between observed and simulated evapotranspiration were attributed to model assumptions of constant, growing season, overstory leaf areas that did not account for phenological changes and understory effects on stand daily water fluxes. Vapor pressure deficit and solar radiation accounted for 58-74% of the variances in simulated daily evapotranspiration during the growing season, though low air temperature and photosynthetic light levels were found to be the major limiting factors regulating simulated canopy conductances to water vapor. Humidity and soil moisture were generally not low enough to induce physiological water stress in black spruce stands, though low soil water potentials resulted in approximate 34% reductions in simulated mean daily canopy conductances for aspen and jack pine stands. The sensitivity of evapotranspiration simulations to leaf area (LAI) was less than expected because of opposing responses of transpiration and evaporation to LAI. The results of this investigation identify several components within boreal forest stands that are sensitive to climate change.

Original languageEnglish
Pages (from-to)29043-29051
Number of pages9
JournalJournal of Geophysical Research
Volume102
Issue number24
DOIs
StatePublished - Dec 26 1997

Fingerprint

Dive into the research topics of 'BIOME-BGC simulations of stand hydrologic processes for BOREAS'. Together they form a unique fingerprint.

Cite this