Carbon dynamics in trees: Feast or famine?

Anna Sala, David R. Woodruff, Frederick C. Meinzer

Research output: Contribution to journalReview articlepeer-review

646 Scopus citations


Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought-related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored non-structural C compounds as indicators of a tree's current demands for photosynthate. Much of the uncertainty surrounding this issue could be resolved by developing a better understanding of the potential functions of non-structural C stored within trees. In addition to functioning as a buffer to reconcile temporal asynchrony between C demand and supply, the storage of non-structural C compounds may be under greater regulation than commonly recognized. We propose that in the face of environmental stochasticity, large, long-lived trees may require larger C investments in storage pools as safety margins than previously recognized, and that an important function of these pools may be to maintain hydraulic transport, particularly during episodes of severe stress. If so, survival and long-term growth in trees remain a function of C availability. Given that drought, freeze-thaw events and increasing tree height all impose additional constraints on vascular transport, the common trend of an increase in non-structural carbohydrate concentrations with tree size, drought or cold is consistent with our hypothesis. If the regulated maintenance of relatively large constitutive stored C pools in trees serves to maintain hydraulic integrity, then the minimum thresholds are expected to vary depending on the specific tissues, species, environment, growth form and habit. Much research is needed to elucidate the extent to which allocation of C to storage in trees is a passive vs. an active process, the specific functions of stored C pools, and the factors that drive active C allocation to storage.

Original languageEnglish
Pages (from-to)764-775
Number of pages12
JournalTree Physiology
Issue number6
StatePublished - Jun 2012


  • carbohydrates
  • carbon allocation
  • embolism
  • hydraulic safety
  • regulated storage
  • tree non-structural carbon storage


Dive into the research topics of 'Carbon dynamics in trees: Feast or famine?'. Together they form a unique fingerprint.

Cite this