TY - JOUR
T1 - Chapter 4 Analysis of Heterogeneity in Molecular Weight and Shape by Analytical Ultracentrifugation Using Parallel Distributed Computing
AU - Demeler, Borries
AU - Brookes, Emre
AU - Nagel-Steger, Luitgard
N1 - Funding Information:
We thank Jeremy Mann and the UTHSCSA Bioinformatics Core Facility and the Texas Advanced Computing Center (UT Austin) for computational support. We gratefully acknowledge support from the National Science Foundation through Teragrid Grant TGMCB060019T, as well as the National Institutes of Health through Grant RR022200 (both to BD). L.N.S. was supported by a grant of the Volkswagenstiftung (I/82 649) to Dieter Willbold, Head of the Institute for Physical Biology of the Heinrich-Heine-University.
PY - 2009
Y1 - 2009
N2 - A computational approach for fitting sedimentation velocity experiments from an analytical ultracentrifuge in a model-independent fashion is presented. This chapter offers a recipe for obtaining high-resolution information for both the shape and the molecular weight distributions of complex mixtures that are heterogeneous in shape and molecular weight and provides suggestions for experimental design to optimize information content. A combination of three methods is used to find the solution most parsimonious in parameters and to verify the statistical confidence intervals of the determined parameters. A supercomputer implementation with a MySQL database back end is integrated into the UltraScan analysis software. The UltraScan LIMS Web portal is used to perform the calculations through a Web interface. The performance and limitations of the method when employed for the analysis of complex mixtures are demonstrated using both simulated data and experimental data characterizing amyloid aggregation.
AB - A computational approach for fitting sedimentation velocity experiments from an analytical ultracentrifuge in a model-independent fashion is presented. This chapter offers a recipe for obtaining high-resolution information for both the shape and the molecular weight distributions of complex mixtures that are heterogeneous in shape and molecular weight and provides suggestions for experimental design to optimize information content. A combination of three methods is used to find the solution most parsimonious in parameters and to verify the statistical confidence intervals of the determined parameters. A supercomputer implementation with a MySQL database back end is integrated into the UltraScan analysis software. The UltraScan LIMS Web portal is used to perform the calculations through a Web interface. The performance and limitations of the method when employed for the analysis of complex mixtures are demonstrated using both simulated data and experimental data characterizing amyloid aggregation.
UR - http://www.scopus.com/inward/record.url?scp=59649129435&partnerID=8YFLogxK
U2 - 10.1016/S0076-6879(08)03804-4
DO - 10.1016/S0076-6879(08)03804-4
M3 - Review article
C2 - 19216924
AN - SCOPUS:59649129435
SN - 0076-6879
VL - 454
SP - 87
EP - 113
JO - Methods in Enzymology
JF - Methods in Enzymology
IS - C
ER -