Coastal development and precipitation drive pathogen flow from land to sea: Evidence from a Toxoplasma gondii and felid host system

Elizabeth VanWormer, Tim E. Carpenter, Purnendu Singh, Karen Shapiro, Wesley W. Wallender, Patricia A. Conrad, John L. Largier, Marco P. Maneta, Jonna A.K. Mazet

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Rapidly developing coastal regions face consequences of land use and climate change including flooding and increased sediment, nutrient, and chemical runoff, but these forces may also enhance pathogen runoff, which threatens human, animal, and ecosystem health. Using the zoonotic parasite Toxoplasma gondii in California, USA as a model for coastal pathogen pollution, we examine the spatial distribution of parasite runoff and the impacts of precipitation and development on projected pathogen delivery to the ocean. Oocysts, the extremely hardy free-living environmental stage of T. gondii shed in faeces of domestic and wild felids, are carried to the ocean by freshwater runoff. Linking spatial pathogen loading and transport models, we show that watersheds with the highest levels of oocyst runoff align closely with regions of increased sentinel marine mammal T. gondii infection. These watersheds are characterized by higher levels of coastal development and larger domestic cat populations. Increases in coastal development and precipitation independently raised oocyst delivery to the ocean (average increases of 44% and 79%, respectively), but dramatically increased parasite runoff when combined (175% average increase). Anthropogenic changes in landscapes and climate can accelerate runoff of diverse pathogens from terrestrial to aquatic environments, influencing transmission to people, domestic animals, and wildlife.

Original languageEnglish
Article number29252
JournalScientific Reports
Volume6
DOIs
StatePublished - Jul 26 2016

Fingerprint

Dive into the research topics of 'Coastal development and precipitation drive pathogen flow from land to sea: Evidence from a Toxoplasma gondii and felid host system'. Together they form a unique fingerprint.

Cite this