TY - JOUR
T1 - Cooperative interactions among subunits of a voltage-dependent potassium channel
T2 - Evidence from expression of concatenated cDNAs
AU - Hurst, Raymond S.
AU - Kavanaugh, Michael P.
AU - Yakel, Jerrel
AU - Adelman, John P.
AU - North, R. Alan
PY - 1992/11/25
Y1 - 1992/11/25
N2 - Four copies of the coding sequence for a voltage-dependent potassium channel (RBK1, rat Kv1.1) were ligated contiguously and transcribed in vitro. The resulting RNA encodes four covalently linked subunit domains ([4]RBK1). Injection of this RNA into Xenopus oocytes resulted in the expression of voltage-dependent potassium currents. A single amino acid substitution, Tyr → Val, located within the outer mouth of the pore, introduced into the equivalent position of any of the four domains, reduced affinity for external tetraethylammonium by approximately the same amount. In constructs containing 0, 1, 2, 3, or 4 Tyr residues the free energy of binding tetraethylammonium was linearly related to the number of Tyr residues. A different amino acid substitution, Leu → Ile, located in the S4 region, was made in the equivalent position of one two, three, or four domains. The depolarization required for channel activation increased approximately linearly with the number of Ile residues, whereas models of independent gating of each domain predict marked nonlinearity. Expression of this concatenated channel provides direct evidence that voltage-dependent potassium channels have four subunits positioned symmetrically around a central permeation pathway and that these subunits interact cooperatively during channel activation.
AB - Four copies of the coding sequence for a voltage-dependent potassium channel (RBK1, rat Kv1.1) were ligated contiguously and transcribed in vitro. The resulting RNA encodes four covalently linked subunit domains ([4]RBK1). Injection of this RNA into Xenopus oocytes resulted in the expression of voltage-dependent potassium currents. A single amino acid substitution, Tyr → Val, located within the outer mouth of the pore, introduced into the equivalent position of any of the four domains, reduced affinity for external tetraethylammonium by approximately the same amount. In constructs containing 0, 1, 2, 3, or 4 Tyr residues the free energy of binding tetraethylammonium was linearly related to the number of Tyr residues. A different amino acid substitution, Leu → Ile, located in the S4 region, was made in the equivalent position of one two, three, or four domains. The depolarization required for channel activation increased approximately linearly with the number of Ile residues, whereas models of independent gating of each domain predict marked nonlinearity. Expression of this concatenated channel provides direct evidence that voltage-dependent potassium channels have four subunits positioned symmetrically around a central permeation pathway and that these subunits interact cooperatively during channel activation.
UR - http://www.scopus.com/inward/record.url?scp=0027078418&partnerID=8YFLogxK
M3 - Article
C2 - 1385425
AN - SCOPUS:0027078418
SN - 0021-9258
VL - 267
SP - 23742
EP - 23745
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -