Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera

Samuel T. Wilson, Frank O. Aylward, Francois Ribalet, Benedetto Barone, John R. Casey, Paige E. Connell, John M. Eppley, Sara Ferron, Jessica N. Fitzsimmons, Christopher T. Hayes, Anna E. Romano, Kendra A. Turk-Kubo, Alice Vislova, E. Virginia Armbrust, David A. Caron, Matthew J. Church, Jonathan P. Zehr, David M. Karl, Edward F. De Long

Research output: Contribution to journalArticlepeer-review

Abstract

The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N"2) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N"2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N"2-fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.

Original languageEnglish
Article number17118
JournalNature Microbiology
Volume2
DOIs
StatePublished - Jul 31 2017

Fingerprint

Dive into the research topics of 'Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera'. Together they form a unique fingerprint.

Cite this