TY - JOUR
T1 - Cytotoxic cell granule-mediated apoptosis
T2 - Characterization of the macromolecular complex of granzyme B with serglycin
AU - Raja, Srikumar M.
AU - Wang, Baikun
AU - Dantuluri, Mandakini
AU - Desai, Umesh R.
AU - Demeler, Borries
AU - Spiegel, Katharina
AU - Metkar, Sunil S.
AU - Froelich, Christopher J.
PY - 2002/12/20
Y1 - 2002/12/20
N2 - We have recently shown that the physiological mediator of granule-mediated apoptosis is a macromolecular complex of granzymes and perforin complexed with the chondroitin-sulfate proteoglycan, serglycin (Metkar, S. S., Wang, B., Aguilar-Santelises, M., Raja, S. M., Uhlin-Hansen, L., Podack, E., Trapani, J. A., and Froelich, C. J. (2002) Immunity 16, 417-428). We now report our biophysical studies establishing the nature of granzyme B-serglycin (GrB·SG) complex. Dynamic laser light scattering studies establish that SG has a hydrodynamic radius of ∼140 ± 23 nm, comparable to some viral particles. Agarose mobility shift gels and surface plasmon resonance (SPR), show that SG binds tightly to GrB and has the capacity to hold 30-60 GrB molecules. SPR studies also indicate equivalent binding affinities (Kd ∼ 0.8 μm), under acidic (granule pH) and neutral isotonic conditions (extra-cytoplasmic pH), for GrB·SG interaction. Finally, characterization of GrB·SG interactions within granules revealed complexes of two distinct molecular sizes, one held ∼4-8 molecules of GrB, whereas the other contained as many as 32 molecules of GrB or other granule proteins. These studies provide a firm biophysical basis for our earlier reported observations that the proapoptotic granzyme is exocytosed predominantly as a macromolecular complex with SG.
AB - We have recently shown that the physiological mediator of granule-mediated apoptosis is a macromolecular complex of granzymes and perforin complexed with the chondroitin-sulfate proteoglycan, serglycin (Metkar, S. S., Wang, B., Aguilar-Santelises, M., Raja, S. M., Uhlin-Hansen, L., Podack, E., Trapani, J. A., and Froelich, C. J. (2002) Immunity 16, 417-428). We now report our biophysical studies establishing the nature of granzyme B-serglycin (GrB·SG) complex. Dynamic laser light scattering studies establish that SG has a hydrodynamic radius of ∼140 ± 23 nm, comparable to some viral particles. Agarose mobility shift gels and surface plasmon resonance (SPR), show that SG binds tightly to GrB and has the capacity to hold 30-60 GrB molecules. SPR studies also indicate equivalent binding affinities (Kd ∼ 0.8 μm), under acidic (granule pH) and neutral isotonic conditions (extra-cytoplasmic pH), for GrB·SG interaction. Finally, characterization of GrB·SG interactions within granules revealed complexes of two distinct molecular sizes, one held ∼4-8 molecules of GrB, whereas the other contained as many as 32 molecules of GrB or other granule proteins. These studies provide a firm biophysical basis for our earlier reported observations that the proapoptotic granzyme is exocytosed predominantly as a macromolecular complex with SG.
UR - http://www.scopus.com/inward/record.url?scp=0037147261&partnerID=8YFLogxK
U2 - 10.1074/jbc.M209607200
DO - 10.1074/jbc.M209607200
M3 - Article
C2 - 12388539
AN - SCOPUS:0037147261
SN - 0021-9258
VL - 277
SP - 49523
EP - 49530
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 51
ER -