Dehn Surgery and Hyperbolic Knot Complements without Hidden Symmetries

Eric Chesebro, Jason Deblois, Neil R Hoffman, Christian Millichap, Priyadip Mondal, William Worden

Research output: Contribution to journalArticlepeer-review

Abstract

Neumann and Reid conjectured that only three hyperbolic knot complements admit hidden symmetries. Here, we provide evidence for the conjecture, giving obstructions for a manifold to have infinitely many fillings that are knot complements with hidden symmetries. Applying these, we show that at most finitely many fillings of any hyperbolic two-bridge link complement can be covered by knot complements with hidden symmetries. We then make our tools effective, showing first that the only knot complement with hidden symmetries and volume less than 6v0 ≈ 6.0896496 is the complement of the figure-eight. We conclude with two proofs that if a hyperbolic knot's complement admits hidden symmetries and covers a filling of the complement of the 622 link, it is the figure-eight.

Original languageEnglish
Pages (from-to)5293-5351
Number of pages59
JournalInternational Mathematics Research Notices
Volume2023
Issue number6
DOIs
StatePublished - Mar 1 2023

Fingerprint

Dive into the research topics of 'Dehn Surgery and Hyperbolic Knot Complements without Hidden Symmetries'. Together they form a unique fingerprint.

Cite this