Developing A Soil Inversion Model Framework for Regional Permafrost Monitoring

Yonghong Yi, Richard H. Chen, Dmitry Nicolsky, Mahta Moghaddam, John S. Kimball, Vladimir E. Romanovsky, Charles E. Miller

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Currently, the community lacks capabilities to assess and monitor landscape scale permafrost active layer dynamics over large extents. To address this need, we developed a concept of a remote sensing based Soil Inversion Model for regional Permafrost (SIM-P) monitoring. The current SIM-P framework includes a satellite-based soil process model and a soil dielectric model. We are also working on incorporating a radar scattering model for Arctic tundra into the SIM-P framework. A unified soil parameterization scheme was developed to harmonize key soil thermal, hydraulic and dielectric parameters in the soil process and radar models that can be used in the joint soil-radar inversion framework. The soil parameter retrievals of the SIM-P framework include soil organic content (SOC) and active layer thickness (ALT). Initial tests of SIM-P using in-situ soil permittivity observations showed reasonable accuracy in predicting site-level SOC and soil temperature profiles at an Alaska tundra site and ALT in Arctic Alaska. SIM-P will be further tested using airborne P- and L-band radar data collected during NASA's Arctic Boreal Vulnerability Experiment (ABoVE) to evaluate the sensitivity of longwave radar to active layer properties.

Original languageEnglish
Title of host publication2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4032-4035
Number of pages4
ISBN (Electronic)9781538691540
DOIs
StatePublished - Jul 2019
Event39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, Japan
Duration: Jul 28 2019Aug 2 2019

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
Country/TerritoryJapan
CityYokohama
Period07/28/1908/2/19

Keywords

  • permafrost active layer
  • radar inversion
  • soil dielectric constant
  • soil freeze/thaw

Fingerprint

Dive into the research topics of 'Developing A Soil Inversion Model Framework for Regional Permafrost Monitoring'. Together they form a unique fingerprint.

Cite this