Directed graphs without rainbow stars

Dániel Gerbner, Cory Palmer, Andrzej Grzesik, Magdalena Prorok

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In a rainbow version of the classical Turán problem one considers multiple graphs on a common vertex set, thinking of each graph as edges in a distinct color, and wants to determine the minimum number of edges in each color, or their sum, which guarantees existence of a rainbow copy (having each edge from a different graph) of a given graph. Here, we find an optimal solution for this problem, both for the minimum and the sum, for any directed star and any number of colors.

Original languageEnglish
Article numberP4.70
JournalElectronic Journal of Combinatorics
Volume31
Issue number4
DOIs
StatePublished - 2024

Fingerprint

Dive into the research topics of 'Directed graphs without rainbow stars'. Together they form a unique fingerprint.

Cite this