TY - JOUR
T1 - Does environment filtering or seed limitation determine post-fire forest recovery patterns in boreal larch forests?
AU - Cai, Wen H.
AU - Liu, Zhihua
AU - Yang, Yuan Z.
AU - Yang, Jian
N1 - Publisher Copyright:
© 2018 Cai, Liu, Yang and Yang.
PY - 2018/9/11
Y1 - 2018/9/11
N2 - Wildfire is a primary natural disturbance in boreal forests, and post-fire vegetation recovery rate influences carbon, water, and energy exchange between the land and atmosphere in the region. Seed availability and environmental filtering are two important determinants in regulating post-fire vegetation recovery in boreal forests. Quantifying how these determinants change over time is helpful for understanding post-fire forest successional trajectory. Time series of remote sensing data offer considerable potential in monitoring the trajectory of post-fire vegetation recovery dynamics beyond current field surveys about structural attributes, which generally lack a temporal perspective across large burned areas. We used a time series of the normalized difference vegetation index (NDVI) and normalized difference shortwave infrared reflectance index (NDSWIR) derived from Landsat images to investigate post-fire dynamics in a Chinese boreal larch forest. An adjacent, unburned patch of a similar forest type and environmental conditions was selected as a control to separate interannual fluctuation in NDVI and NDSWIR caused by climate from changes due to wildfire. Temporal anomalies in NDVI and NDSWIR showed that more than 10 years were needed for ecosystems to recover to a pre-fire state. The boosted regression tree analysis showed that fire severity exerted a persistent, dominant influence on vegetation recovery during the early post-fire successional stage and explained more than 60% of variation in vegetation recovery, whereas distance to the nearest unburned area and environmental conditions exhibited a relatively small influence. This result indicated that the legacy effects of fire disturbance, which control seed availability for tree recruitment, would persist for decades. The influence of environmental filtering could increase with succession and could mitigate the initial heterogeneity in recovery caused by wildfire.
AB - Wildfire is a primary natural disturbance in boreal forests, and post-fire vegetation recovery rate influences carbon, water, and energy exchange between the land and atmosphere in the region. Seed availability and environmental filtering are two important determinants in regulating post-fire vegetation recovery in boreal forests. Quantifying how these determinants change over time is helpful for understanding post-fire forest successional trajectory. Time series of remote sensing data offer considerable potential in monitoring the trajectory of post-fire vegetation recovery dynamics beyond current field surveys about structural attributes, which generally lack a temporal perspective across large burned areas. We used a time series of the normalized difference vegetation index (NDVI) and normalized difference shortwave infrared reflectance index (NDSWIR) derived from Landsat images to investigate post-fire dynamics in a Chinese boreal larch forest. An adjacent, unburned patch of a similar forest type and environmental conditions was selected as a control to separate interannual fluctuation in NDVI and NDSWIR caused by climate from changes due to wildfire. Temporal anomalies in NDVI and NDSWIR showed that more than 10 years were needed for ecosystems to recover to a pre-fire state. The boosted regression tree analysis showed that fire severity exerted a persistent, dominant influence on vegetation recovery during the early post-fire successional stage and explained more than 60% of variation in vegetation recovery, whereas distance to the nearest unburned area and environmental conditions exhibited a relatively small influence. This result indicated that the legacy effects of fire disturbance, which control seed availability for tree recruitment, would persist for decades. The influence of environmental filtering could increase with succession and could mitigate the initial heterogeneity in recovery caused by wildfire.
KW - Boosted regression tree analysis
KW - Climate change
KW - Environmental filtering
KW - Fire disturbance
KW - Forest recovery
KW - Seed availability
UR - http://www.scopus.com/inward/record.url?scp=85054501337&partnerID=8YFLogxK
U2 - 10.3389/fpls.2018.01318
DO - 10.3389/fpls.2018.01318
M3 - Article
AN - SCOPUS:85054501337
SN - 1664-462X
VL - 9
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 1318
ER -