Dosing, Not the Dose: Comparing Chronic and Pulsed Silver Nanoparticle Exposures

Benjamin P. Colman, Leanne F. Baker, Ryan S. King, Cole W. Matson, Jason M. Unrine, Stella M. Marinakos, Danielle E. Gorka, Emily S. Bernhardt

    Research output: Contribution to journalArticlepeer-review


    The environmental impacts of manufactured nanoparticles are often studied using high-concentration pulse-additions of freshly synthesized nanoparticles, while predicted releases are characterized by chronic low-concentration additions of weathered particles. To test the effects in wetlands of addition rate and nanoparticle speciation on water column silver concentrations, ecosystem impacts, and silver accumulation by biota, we conducted a year-long mesocosm experiment. We compared a pulse addition of Ag0-NPs to chronic weekly additions of either Ag0-NPs or sulfidized silver nanoparticles. The initially high water column silver concentrations in the pulse treatment declined such that after 4 weeks it was lower on average than in the two chronic treatments. While the pulse caused a marked increase in dissolved methane in the first week of the experiment, the chronic treatments had smaller increases in methane concentration that were more prolonged between weeks 28-45. Much like water column silver, most organisms in chronic treatments had comparable silver concentrations to the pulse treatment after only 4 weeks, and all but one organism had similar or higher concentrations than the pulse treatment after one year. Pulse exposures thus both overestimate the intensity of short-term exposures and effects and underestimate the more realistic long-term exposure, ecosystem effects, and accumulation seen in chronic exposures.

    Original languageEnglish
    Pages (from-to)10048-10056
    Number of pages9
    JournalEnvironmental Science and Technology
    Issue number17
    StatePublished - Sep 4 2018


    Dive into the research topics of 'Dosing, Not the Dose: Comparing Chronic and Pulsed Silver Nanoparticle Exposures'. Together they form a unique fingerprint.

    Cite this