TY - JOUR
T1 - Early forest thinning changes aboveground carbon distribution among pools, but not total amount
AU - Schaedel, Michael S.
AU - Larson, Andrew J.
AU - Affleck, David L.R.
AU - Belote, R. Travis
AU - Goodburn, John M.
AU - Page-Dumroese, Deborah S.
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT) implemented very early in stand development. To assess the climate change mitigation potential of PCT, as well as tradeoffs with climate change adaptation, we examined total aboveground C stores in a 54-year-old western larch (Larix occidentalis Nutt.) precommercial thinning experiment to determine how different PCT treatments affect long-term aboveground C storage and distribution among pools. Four aboveground C pools (live overstory, live understory/mid-story, woody detritus, and forest floor) were measured and separated into C accumulated prior to initiation of the current stand (legacy C) and C accumulated by the current stand (non-legacy C). PCT had no influence on the total non-legacy aboveground C stores 54 years after treatment. Live tree C was nearly identical across densities due to much larger trees in low density treatments. Low density stands had more understory and mid-story C while unthinned plots had significantly more non-legacy woody detritus C than thinned stands. Legacy pools did not vary significantly with density, but made up a substantial proportion of aboveground C stores. We found that: (1) fifty-four years after PCT total aboveground C is similar across treatments, due primarily to the increase in mean tree C of trees grown at lower stand densities; (2) deadwood legacies from the pre-disturbance forest still play an important role in long-term C storage 62 years after current stand initiation, accounting for approximately 20–25% of aboveground C stores; and (3) given enough time since early thinning, there is no trade-off between managing stands to promote individual tree growth and development of understory vegetation, and maximizing stand level accumulation of aboveground C over the long term. We infer that early PCT can be used to simultaneously achieve climate change mitigation and adaptation objectives, provided treatments are implemented early in stand development before canopy closure and the onset of intense intertree competition.
AB - Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT) implemented very early in stand development. To assess the climate change mitigation potential of PCT, as well as tradeoffs with climate change adaptation, we examined total aboveground C stores in a 54-year-old western larch (Larix occidentalis Nutt.) precommercial thinning experiment to determine how different PCT treatments affect long-term aboveground C storage and distribution among pools. Four aboveground C pools (live overstory, live understory/mid-story, woody detritus, and forest floor) were measured and separated into C accumulated prior to initiation of the current stand (legacy C) and C accumulated by the current stand (non-legacy C). PCT had no influence on the total non-legacy aboveground C stores 54 years after treatment. Live tree C was nearly identical across densities due to much larger trees in low density treatments. Low density stands had more understory and mid-story C while unthinned plots had significantly more non-legacy woody detritus C than thinned stands. Legacy pools did not vary significantly with density, but made up a substantial proportion of aboveground C stores. We found that: (1) fifty-four years after PCT total aboveground C is similar across treatments, due primarily to the increase in mean tree C of trees grown at lower stand densities; (2) deadwood legacies from the pre-disturbance forest still play an important role in long-term C storage 62 years after current stand initiation, accounting for approximately 20–25% of aboveground C stores; and (3) given enough time since early thinning, there is no trade-off between managing stands to promote individual tree growth and development of understory vegetation, and maximizing stand level accumulation of aboveground C over the long term. We infer that early PCT can be used to simultaneously achieve climate change mitigation and adaptation objectives, provided treatments are implemented early in stand development before canopy closure and the onset of intense intertree competition.
KW - Carbon storage
KW - Climate change
KW - Climate change adaptation
KW - Climate change mitigation
KW - Density management
KW - Larix occidentalis
KW - Long-term studies
KW - Precommercial thinning
KW - Western larch
UR - http://www.scopus.com/inward/record.url?scp=85008873185&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2016.12.018
DO - 10.1016/j.foreco.2016.12.018
M3 - Article
AN - SCOPUS:85008873185
SN - 0378-1127
VL - 389
SP - 187
EP - 198
JO - Forest Ecology and Management
JF - Forest Ecology and Management
ER -