Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines

Lisette P. Waits, Gordon Luikart, Pierre Taberlet

Research output: Contribution to journalArticlepeer-review

1139 Scopus citations

Abstract

Individual identification using DNA fingerprinting methods is emerging as a critical tool in conservation genetics and molecular ecology. Statistical methods that estimate the probability of sampling identical genotypes using theoretical equations generally assume random associations between alleles within and among loci. These calculations are probably inaccurate for many animal and plant populations due to population substructure. We evaluated the accuracy of a probability of identity (P(ID)) estimation by comparing the observed and expected P(ID), using large nuclear DNA microsatellite data sets from three endangered species: the grey wolf (Canis lupus), the brown bear (Ursus arctos), and the Australian northern hairy-nosed wombat (Lasiorinyus krefftii). The theoretical estimates of P(ID) were consistently lower than the observed P(ID), and can differ by as much as three orders of magnitude. To help researchers and managers avoid potential problems associated with this bias, we introduce an equation for P(ID) between sibs. This equation provides an estimator that can be used as a conservative upper bound for the probability of observing identical multilocus genotypes between two individuals sampled from a population. We suggest computing the actual observed P(ID) when possible and give general guidelines for the number of codominant and dominant marker loci required to achieve a reasonably low P(ID) (e.g. 0.01-0.0001).

Original languageEnglish
Pages (from-to)249-256
Number of pages8
JournalMolecular Ecology
Volume10
Issue number1
DOIs
StatePublished - 2001

Keywords

  • DNA fingerprinting
  • Match probability
  • Microsatellites
  • Noninvasive genetic sampling
  • Population estimation
  • Probability of identity

Fingerprint

Dive into the research topics of 'Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines'. Together they form a unique fingerprint.

Cite this