TY - JOUR
T1 - Evidence for the differential efficacy of yaw and pitch gaze stabilization mechanisms in people with multiple sclerosis
AU - Grove, Colin R.
AU - Loyd, Brian J.
AU - Dibble, Leland E.
AU - Schubert, Michael C.
N1 - © 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2024/6/5
Y1 - 2024/6/5
N2 - People with multiple sclerosis (PwMS) who report dizziness often have gaze instability due to vestibulo-ocular reflex (VOR) deficiencies and compensatory saccade (CS) abnormalities. Herein, we aimed to describe and compare the gaze stabilization mechanisms for yaw and pitch head movements in PwMS. Thirty-seven PwMS (27 female, mean ± SD age = 53.4 ± 12.4 years old, median [IQR] Expanded Disability Status Scale Score = 3.5, [1.0]. We analyzed video head impulse test results for VOR gain, CS frequency, CS latency, gaze position error (GPE) at impulse end, and GPE at 400 ms after impulse start. Discrepancies were found for median [IQR] VOR gain in yaw (0.92 [0.14]) versus pitch-up (0.71 [0.44], p < 0.001) and pitch-down (0.81 [0.44], p = 0.014]), CS latency in yaw (258.13 [76.8]) ms versus pitch-up (208.78 [65.97]) ms, p = 0.001] and pitch-down (132.17 [97.56] ms, p = 0.006), GPE at impulse end in yaw (1.15 [1.85] degs versus pitch-up (2.71 [3.9] degs, p < 0.001), and GPE at 400 ms in yaw (-0.25 [0.98] degs) versus pitch-up (1.53 [1.07] degs, p < 0.001) and pitch-down (1.12 [1.82] degs, p = 0.001). Compared with yaw (0.91 [0.75]), CS frequency was similar for pitch-up (1.03 [0.93], p = 0.999) but lower for pitch-down (0.65 [0.64], p = 0.023). GPE at 400 ms was similar for yaw and pitch-down (1.88 [2.76] degs, p = 0.400). We postulate that MS may have preferentially damaged the vertical VOR and saccade pathways in this cohort.
AB - People with multiple sclerosis (PwMS) who report dizziness often have gaze instability due to vestibulo-ocular reflex (VOR) deficiencies and compensatory saccade (CS) abnormalities. Herein, we aimed to describe and compare the gaze stabilization mechanisms for yaw and pitch head movements in PwMS. Thirty-seven PwMS (27 female, mean ± SD age = 53.4 ± 12.4 years old, median [IQR] Expanded Disability Status Scale Score = 3.5, [1.0]. We analyzed video head impulse test results for VOR gain, CS frequency, CS latency, gaze position error (GPE) at impulse end, and GPE at 400 ms after impulse start. Discrepancies were found for median [IQR] VOR gain in yaw (0.92 [0.14]) versus pitch-up (0.71 [0.44], p < 0.001) and pitch-down (0.81 [0.44], p = 0.014]), CS latency in yaw (258.13 [76.8]) ms versus pitch-up (208.78 [65.97]) ms, p = 0.001] and pitch-down (132.17 [97.56] ms, p = 0.006), GPE at impulse end in yaw (1.15 [1.85] degs versus pitch-up (2.71 [3.9] degs, p < 0.001), and GPE at 400 ms in yaw (-0.25 [0.98] degs) versus pitch-up (1.53 [1.07] degs, p < 0.001) and pitch-down (1.12 [1.82] degs, p = 0.001). Compared with yaw (0.91 [0.75]), CS frequency was similar for pitch-up (1.03 [0.93], p = 0.999) but lower for pitch-down (0.65 [0.64], p = 0.023). GPE at 400 ms was similar for yaw and pitch-down (1.88 [2.76] degs, p = 0.400). We postulate that MS may have preferentially damaged the vertical VOR and saccade pathways in this cohort.
KW - Compensatory saccade
KW - Multiple sclerosis
KW - Vestibulo-ocular reflex
KW - Video head impulse test
KW - Multiple Sclerosis/physiopathology
KW - Fixation, Ocular/physiology
KW - Humans
KW - Middle Aged
KW - Male
KW - Head Movements/physiology
KW - Head Impulse Test/methods
KW - Reflex, Vestibulo-Ocular/physiology
KW - Female
KW - Adult
KW - Saccades/physiology
KW - Aged
UR - http://www.scopus.com/inward/record.url?scp=85195282874&partnerID=8YFLogxK
U2 - 10.1007/s00221-024-06864-1
DO - 10.1007/s00221-024-06864-1
M3 - Article
C2 - 38839617
AN - SCOPUS:85195282874
SN - 0014-4819
VL - 242
SP - 1797
EP - 1806
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 7
ER -