Ex Uno Plures: Clonal Reinforcement Drives Evolution of a Simple Microbial Community

Margie Kinnersley, Jared Wenger, Evgueny Kroll, Julian Adams, Gavin Sherlock, Frank Rosenzweig

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

A major goal of genetics is to define the relationship between phenotype and genotype, while a major goal of ecology is to identify the rules that govern community assembly. Achieving these goals by analyzing natural systems can be difficult, as selective pressures create dynamic fitness landscapes that vary in both space and time. Laboratory experimental evolution offers the benefit of controlling variables that shape fitness landscapes, helping to achieve both goals. We previously showed that a clonal population of E. coli experimentally evolved under continuous glucose limitation gives rise to a genetically diverse community consisting of one clone, CV103, that best scavenges but incompletely utilizes the limiting resource, and others, CV101 and CV116, that consume its overflow metabolites. Because this community can be disassembled and reassembled, and involves cooperative interactions that are stable over time, its genetic diversity is sustained by clonal reinforcement rather than by clonal interference. To understand the genetic factors that produce this outcome, and to illuminate the community's underlying physiology, we sequenced the genomes of ancestral and evolved clones. We identified ancestral mutations in intermediary metabolism that may have predisposed the evolution of metabolic interdependence. Phylogenetic reconstruction indicates that the lineages that gave rise to this community diverged early, as CV103 shares only one <underline>S</underline>ingle <underline>N</underline>ucleotide <underline>P</underline>olymorphism with the other evolved clones. Underlying CV103's phenotype we identified a set of mutations that likely enhance glucose scavenging and maintain redox balance, but may do so at the expense of carbon excreted in overflow metabolites. Because these overflow metabolites serve as growth substrates that are differentially accessible to the other community members, and because the scavenging lineage shares only one SNP with these other clones, we conclude that this lineage likely served as an "engine" generating diversity by creating new metabolic niches, but not the occupants themselves.

Original languageEnglish
Article numbere1004430
JournalPLoS Genetics
Volume10
Issue number6
DOIs
StatePublished - Jun 2014

Fingerprint

Dive into the research topics of 'Ex Uno Plures: Clonal Reinforcement Drives Evolution of a Simple Microbial Community'. Together they form a unique fingerprint.

Cite this