TY - JOUR
T1 - Exome-wide DNA capture and next generation sequencing in domestic and wild species
AU - Cosart, Ted
AU - Beja-Pereira, Albano
AU - Chen, Shanyuan
AU - Ng, Sarah B.
AU - Shendure, Jay
AU - Luikart, Gordon
N1 - Funding Information:
We thank Ruolan Qiu and Choli Lee for technical assistance with capture and sequencing. This study was funded by the Portuguese Foundation for Science and Technology (FCT) project PTDC/CVT/099782/2008 and PTDC/ CVT/68907/2006. T.C. was supported by the National Science Foundation and CIBIO/UP. S.C. is supported by a FCT grant SFRH/BPD/46082/2008. G.L was partially supported by the National Science Foundation (DEB 074218), the Walton Family Foundation, CIBIO/UP, and the Portuguese science foundation grants (PTDC/BIA-BDE/65625/2006; and PTDC/CVT/69438/2006).
PY - 2011/7/5
Y1 - 2011/7/5
N2 - Background: Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits.Results: We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes.Conclusions: This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
AB - Background: Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits.Results: We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes.Conclusions: This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
UR - http://www.scopus.com/inward/record.url?scp=79959813466&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-12-347
DO - 10.1186/1471-2164-12-347
M3 - Article
C2 - 21729323
AN - SCOPUS:79959813466
SN - 1471-2164
VL - 12
JO - BMC Genomics
JF - BMC Genomics
M1 - 347
ER -