Abstract
Many aquatic insects are exposed to the dual stressors of heavy metal pollution and rising water temperatures from global warming. These stresses may interact and have stronger impacts on aquatic organisms if heavy metals interfere with the ability of these organisms to handle high temperatures. Here we focus on the effect of copper on upper thermal limits of giant salmonfly nymphs (Order: Plecoptera, Pteronarcys californica), a stonefly species which is common in parts of western North America. Experimental exposure to copper reduced upper thermal limits by ∼ 10 °C in some cases and depressed the hypoxia tolerance (Pcrit) of nymphs by ∼ 0.5 mg L−1 DO. These results suggest that copper inhibits the delivery of oxygen, which may explain, in part, the strong reductions in CTMAX that we report. Fluorescence microscopy of Cu-exposed individuals indicated high levels of copper in chloride cells but no clear evidence of damage to or high levels of copper on the gills themselves. Our study indicates that populations of aquatic insects from copper-polluted environments may be further at risk to future warming than those from uncontaminated environments.
Original language | English |
---|---|
Article number | 104455 |
Journal | Journal of Insect Physiology |
Volume | 143 |
DOIs | |
State | Published - Nov 1 2022 |
Keywords
- CT
- Chloride cell
- Copper
- Critical thermal tolerance
- Gill filaments
- Metabolic rate