Extreme localized exhumation at syntaxes initiated by subduction geometry

Rebecca Bendick, Todd A. Ehlers

Research output: Contribution to journalArticlepeer-review

Abstract

Some of the highest and most localized rates of lithospheric deformation in the world are observed at the transition between adjacent plate boundary subduction segments. The initiating perturbation of this deformation has long been attributed to vigorous erosional processes as observed at Nanga Parbat and Namche Barwa in the Himalaya and at Mount St. Elias in Alaska. However, an erosion-dominated mechanism ignores the 3-D geometry of curved subducting plates. Here we present an alternative explanation for rapid exhumation at these locations based on the 3-D thermomechanical evolution of collisions between plates with nonplanar geometries. Comparison of model predictions with existing data reproduces the defining characteristics of these mountains and offers an explanation for their spatial correlation with arc termini. These results demonstrate a "bottom-up" tectonic rather than "top-down" erosional initiation of feedbacks between erosion and tectonic deformation; hence, the importance of 3-D subduction geometry.

Original languageEnglish
Pages (from-to)5861-5867
Number of pages7
JournalGeophysical Research Letters
Volume41
Issue number16
DOIs
StatePublished - Aug 28 2014

Fingerprint

Dive into the research topics of 'Extreme localized exhumation at syntaxes initiated by subduction geometry'. Together they form a unique fingerprint.

Cite this