Abstract
Using 30 years of climate records from 20 weather stations, we investigate the magnitude of temperature and precipitation change, and change in the length of the growing season between 1961 and 1990. Special attention is paid to the period between 1981 and 1990, because recent research suggests that, during this time span, forest productivity may have increased in the northern latitudes. In order to understand the importance of changes in climate on forest growth, we use the ecosystem model FOREST-BGC as a diagnostic tool to predict the annual net primary production (NPP). The results of our study indicate: no change in precipitation between 1961 and 1990; a significant (α = 0.05) increase in mean annual temperature of 0.72°C, mean annual minimum temperature (0.80°C), winter temperature (2.36°C) as well as an increase in the length of the temperature-controlled growing season by 11 days, resulting in a significant increase in diameter increment obtained from 1179 cores of Norway spruce across Austria. The trends in NPP are consistent with observed increment rates validating the use of biogeochemical modeling as a diagnostic tool to search for possible causes on changing environmental conditions.
Original language | English |
---|---|
Pages (from-to) | 209-219 |
Number of pages | 11 |
Journal | Forest Ecology and Management |
Volume | 122 |
Issue number | 3 |
DOIs | |
State | Published - Sep 27 1999 |
Keywords
- Climate change
- FOREST-BGC model
- Growth and yield
- Growth trends
- Norway spruce