TY - JOUR
T1 - GOOGA
T2 - A platform to synthesize mapping experiments and identify genomic structural diversity
AU - Flagel, Lex E.
AU - Blackman, Benjamin K.
AU - Fishman, Lila
AU - Monnahan, Patrick J.
AU - Sweigart, Andrea
AU - Kelly, John K.
N1 - Publisher Copyright:
© 2019 Flagel et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
PY - 2019
Y1 - 2019
N2 - Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. We develop a novel statistical approach to comparative genetic mapping to detect large-scale structural mutations from low-level sequencing data. The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA), couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic mapping populations. We demonstrate the method using both simulated data (calibrated from experiments on Drosophila melanogaster) and real data from five distinct crosses within the flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numerous errors (misplaced sequences) in the M. guttatus reference genome and confirms or detects eight large inversions polymorphic within the species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
AB - Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. We develop a novel statistical approach to comparative genetic mapping to detect large-scale structural mutations from low-level sequencing data. The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA), couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic mapping populations. We demonstrate the method using both simulated data (calibrated from experiments on Drosophila melanogaster) and real data from five distinct crosses within the flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numerous errors (misplaced sequences) in the M. guttatus reference genome and confirms or detects eight large inversions polymorphic within the species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
UR - http://www.scopus.com/inward/record.url?scp=85065347235&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1006949
DO - 10.1371/journal.pcbi.1006949
M3 - Article
C2 - 30986215
AN - SCOPUS:85065347235
SN - 1553-734X
VL - 15
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 4
M1 - e1006949
ER -