TY - JOUR
T1 - Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web
AU - Muhly, Tyler B.
AU - Hebblewhite, Mark
AU - Paton, Dale
AU - Pitt, Justin A.
AU - Boyce, Mark S.
AU - Musiani, Marco
PY - 2013/5/10
Y1 - 2013/5/10
N2 - Ongoing debate about whether food webs are primarily regulated by predators or by primary plant productivity, cast as top-down and bottom-up effects, respectively, may becoming superfluous. Given that most of the world's ecosystems are human dominated we broadened this dichotomy by considering human effects in a terrestrial food-web. We studied a multiple human-use landscape in southwest Alberta, Canada, as opposed to protected areas where previous terrestrial food-web studies have been conducted. We used structural equation models (SEMs) to assess the strength and direction of relationships between the density and distribution of: (1) humans, measured using a density index; (2) wolves (Canis lupus), elk (Cervus elpahus) and domestic cattle (Bos taurus), measured using resource selection functions, and; (3) forage quality, quantity and utilization (measured at vegetation sampling plots). Relationships were evaluated by taking advantage of temporal and spatial variation in human density, including day versus night, and two landscapes with the highest and lowest human density in the study area. Here we show that forage-mediated effects of humans had primacy over predator-mediated effects in the food web. In our parsimonious SEM, occurrence of humans was most correlated with occurrence of forage (β = 0.637, p<0.0001). Elk and cattle distribution were correlated with forage (elk day: β = 0.400, p<0.0001; elk night: β = 0.369, p<0.0001; cattle day: β = 0.403, p<0.0001; cattle, night: β = 0.436, p<0.0001), and the distribution of elk or cattle and wolves were positively correlated during daytime (elk: β = 0.293, p <0.0001, cattle: β = 0.303, p<0.0001) and nighttime (elk: β = 0.460, p<0.0001, cattle: β = 0.482, p<0.0001). Our results contrast with research conducted in protected areas that suggested human effects in the food web are primarily predator-mediated. Instead, human influence on vegetation may strengthen bottom-up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects.
AB - Ongoing debate about whether food webs are primarily regulated by predators or by primary plant productivity, cast as top-down and bottom-up effects, respectively, may becoming superfluous. Given that most of the world's ecosystems are human dominated we broadened this dichotomy by considering human effects in a terrestrial food-web. We studied a multiple human-use landscape in southwest Alberta, Canada, as opposed to protected areas where previous terrestrial food-web studies have been conducted. We used structural equation models (SEMs) to assess the strength and direction of relationships between the density and distribution of: (1) humans, measured using a density index; (2) wolves (Canis lupus), elk (Cervus elpahus) and domestic cattle (Bos taurus), measured using resource selection functions, and; (3) forage quality, quantity and utilization (measured at vegetation sampling plots). Relationships were evaluated by taking advantage of temporal and spatial variation in human density, including day versus night, and two landscapes with the highest and lowest human density in the study area. Here we show that forage-mediated effects of humans had primacy over predator-mediated effects in the food web. In our parsimonious SEM, occurrence of humans was most correlated with occurrence of forage (β = 0.637, p<0.0001). Elk and cattle distribution were correlated with forage (elk day: β = 0.400, p<0.0001; elk night: β = 0.369, p<0.0001; cattle day: β = 0.403, p<0.0001; cattle, night: β = 0.436, p<0.0001), and the distribution of elk or cattle and wolves were positively correlated during daytime (elk: β = 0.293, p <0.0001, cattle: β = 0.303, p<0.0001) and nighttime (elk: β = 0.460, p<0.0001, cattle: β = 0.482, p<0.0001). Our results contrast with research conducted in protected areas that suggested human effects in the food web are primarily predator-mediated. Instead, human influence on vegetation may strengthen bottom-up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects.
UR - http://www.scopus.com/inward/record.url?scp=84877268126&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0064311
DO - 10.1371/journal.pone.0064311
M3 - Article
C2 - 23667705
AN - SCOPUS:84877268126
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e64311
ER -