Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale

Kelsey G. Jencso, Brian L. McGlynn, Michael N. Gooseff, Steven M. Wondzell, Kenneth E. Bencala, Lucy A. Marshall

Research output: Contribution to journalArticlepeer-review

435 Scopus citations

Abstract

The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first-order control on the distribution of soil water and groundwater. Hillslope-riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope-riparian-stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape-scale connectivity through time and ascertain its relationship to catchment-scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first-order control on runoff source area and whole catchment response characteristics.

Original languageEnglish
Article numberW04428
JournalWater Resources Research
Volume45
Issue number4
DOIs
StatePublished - Apr 2009

Fingerprint

Dive into the research topics of 'Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale'. Together they form a unique fingerprint.

Cite this