If training data appears to be mislabeled, should we relabel it? Improving supervised learning algorithms for threat detection in ground penetrating radar data

Daniël Reichman, Leslie M. Collins, Jordan M. Malof

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work focuses on the development of automatic buried threat detection (BTD) algorithms using ground penetrating radar (GPR) data. Buried threats tend to exhibit unique characteristics in GPR imagery, such as high energy hyperbolic shapes, which can be leveraged for detection. Many recent BTD algorithms are supervised, and therefore they require training with exemplars of GPR data collected over non-threat locations and threat locations, respectively. Frequently, data from non-threat GPR examples will exhibit high energy hyperbolic patterns, similar to those observed from a buried threat. Is it still useful therefore, to include such examples during algorithm training, and encourage an algorithm to label such data as a non-threat? Similarly, some true buried threat examples exhibit very little distinctive threat-like patterns. We investigate whether it is beneficial to treat such GPR data examples as mislabeled, and either (i) relabel them, or (ii) remove them from training. We study this problem using two algorithms to automatically identify mislabeled examples, if they are present, and examine the impact of removing or relabeling them for training. We conduct these experiments on a large collection of GPR data with several state-of-the-art GPR-based BTD algorithms.

Original languageEnglish
Title of host publicationDetection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII
EditorsSteven S. Bishop, Jason C. Isaacs
PublisherSPIE
ISBN (Electronic)9781510617674
DOIs
StatePublished - 2018
EventDetection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII 2018 - Orlando, United States
Duration: Apr 16 2018Apr 18 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10628
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceDetection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII 2018
Country/TerritoryUnited States
CityOrlando
Period04/16/1804/18/18

Keywords

  • buried threat detection
  • ground penetrating radar
  • mislabeled data
  • supervised learning

Fingerprint

Dive into the research topics of 'If training data appears to be mislabeled, should we relabel it? Improving supervised learning algorithms for threat detection in ground penetrating radar data'. Together they form a unique fingerprint.

Cite this