TY - JOUR
T1 - Impact of hot and cold exposure on human skeletal muscle gene expression
AU - Zak, Roksana B.
AU - Shute, Robert J.
AU - Heesch, Matthew W.S.
AU - La Salle, D. Taylor
AU - Bubak, Matthew P.
AU - Dinan, Nicholas E.
AU - Laursen, Terence L.
AU - Slivka, Dustin R.
N1 - Publisher Copyright:
© 2017, Canadian Science Publishing. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Many human diseases lead to a loss of skeletal muscle metabolic function and mass. Local and environmental temperature can modulate the exercise-stimulated response of several genes involved in mitochondrial biogenesis and skeletal muscle function in a human model. However, the impact of environmental temperature, independent of exercise, has not been addressed in a human model. Thus, the purpose of this study was to compare the effects of exposure to hot, cold, and room temperature conditions on skeletal muscle gene expression related to mitochondrial biogenesis and muscle mass. Recreationally trained male subjects (n = 12) had muscle biopsies taken from the vastus lateralis before and after 3 h of exposure to hot (33 °C), cold (7 °C), or room temperature (20 °C) conditions. Temperature had no effect on most of the genes related to mitochondrial biogenesis, myogenesis, or proteolysis (p > 0.05). Core temperature was significantly higher in hot and cold environments compared with room temperature (37.2 ± 0.1 °C, p = 0.001; 37.1 ± 0.1 °C, p = 0.013; 36.9 ± 0.1 °C, respectively). Whole-body oxygen consumption was also significantly higher in hot and cold compared with room temperature (0.38 ± 0.01 L·min−1, p < 0.001; 0.52 ± 0.03 L·min−1, p < 0.001; 0.35 ± 0.01 L·min−1, respectively). In conclusion, these data show that acute temperature exposure alone does not elicit significant changes in skeletal muscle gene expression. When considered in conjunction with previous research, exercise appears to be a necessary component to observe gene expression alterations between different environmental temperatures in humans.
AB - Many human diseases lead to a loss of skeletal muscle metabolic function and mass. Local and environmental temperature can modulate the exercise-stimulated response of several genes involved in mitochondrial biogenesis and skeletal muscle function in a human model. However, the impact of environmental temperature, independent of exercise, has not been addressed in a human model. Thus, the purpose of this study was to compare the effects of exposure to hot, cold, and room temperature conditions on skeletal muscle gene expression related to mitochondrial biogenesis and muscle mass. Recreationally trained male subjects (n = 12) had muscle biopsies taken from the vastus lateralis before and after 3 h of exposure to hot (33 °C), cold (7 °C), or room temperature (20 °C) conditions. Temperature had no effect on most of the genes related to mitochondrial biogenesis, myogenesis, or proteolysis (p > 0.05). Core temperature was significantly higher in hot and cold environments compared with room temperature (37.2 ± 0.1 °C, p = 0.001; 37.1 ± 0.1 °C, p = 0.013; 36.9 ± 0.1 °C, respectively). Whole-body oxygen consumption was also significantly higher in hot and cold compared with room temperature (0.38 ± 0.01 L·min−1, p < 0.001; 0.52 ± 0.03 L·min−1, p < 0.001; 0.35 ± 0.01 L·min−1, respectively). In conclusion, these data show that acute temperature exposure alone does not elicit significant changes in skeletal muscle gene expression. When considered in conjunction with previous research, exercise appears to be a necessary component to observe gene expression alterations between different environmental temperatures in humans.
KW - Mitochondrial biogenesis
KW - Myogenesis
KW - Proteolysis
KW - Temperature
KW - mRNA
UR - http://www.scopus.com/inward/record.url?scp=85014121956&partnerID=8YFLogxK
U2 - 10.1139/apnm-2016-0415
DO - 10.1139/apnm-2016-0415
M3 - Article
C2 - 28177744
AN - SCOPUS:85014121956
SN - 1715-5312
VL - 42
SP - 319
EP - 325
JO - Applied Physiology, Nutrition and Metabolism
JF - Applied Physiology, Nutrition and Metabolism
IS - 3
ER -