TY - JOUR
T1 - Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty
AU - Allred, Brady W.
AU - Bestelmeyer, Brandon T.
AU - Boyd, Chad S.
AU - Brown, Christopher
AU - Davies, Kirk W.
AU - Duniway, Michael C.
AU - Ellsworth, Lisa M.
AU - Erickson, Tyler A.
AU - Fuhlendorf, Samuel D.
AU - Griffiths, Timothy V.
AU - Jansen, Vincent
AU - Jones, Matthew O.
AU - Karl, Jason
AU - Knight, Anna
AU - Maestas, Jeremy D.
AU - Maynard, Jonathan J.
AU - McCord, Sarah E.
AU - Naugle, David E.
AU - Starns, Heath D.
AU - Twidwell, Dirac
AU - Uden, Daniel R.
N1 - Publisher Copyright:
© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society
PY - 2021/5
Y1 - 2021/5
N2 - Operational satellite remote sensing products are transforming rangeland management and science. Advancements in computation, data storage and processing have removed barriers that previously blocked or hindered the development and use of remote sensing products. When combined with local data and knowledge, remote sensing products can inform decision-making at multiple scales. We used temporal convolutional networks to produce a fractional cover product that spans western United States rangelands. We trained the model with 52,012 on-the-ground vegetation plots to simultaneously predict fractional cover for annual forbs and grasses, perennial forbs and grasses, shrubs, trees, litter and bare ground. To assist interpretation and to provide a measure of prediction confidence, we also produced spatiotemporal-explicit, pixel-level estimates of uncertainty. We evaluated the model with 5,780 on-the-ground vegetation plots removed from the training data. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean squared error. Evaluation with additional datasets that were not part of the training dataset, and that varied in geographic range, method of collection, scope and size, revealed similar metrics. Model performance increased across all functional groups compared to the previously produced fractional product. The advancements achieved with the new rangeland fractional cover product expand the management toolbox with improved predictions of fractional cover and pixel-level uncertainty. The new product is available on the Rangeland Analysis Platform (https://rangelands.app/), an interactive web application that tracks rangeland vegetation through time. This product is intended to be used alongside local on-the-ground data, expert knowledge, land use history, scientific literature and other sources of information when making interpretations. When being used to inform decision-making, remotely sensed products should be evaluated and utilized according to the context of the decision and not be used in isolation.
AB - Operational satellite remote sensing products are transforming rangeland management and science. Advancements in computation, data storage and processing have removed barriers that previously blocked or hindered the development and use of remote sensing products. When combined with local data and knowledge, remote sensing products can inform decision-making at multiple scales. We used temporal convolutional networks to produce a fractional cover product that spans western United States rangelands. We trained the model with 52,012 on-the-ground vegetation plots to simultaneously predict fractional cover for annual forbs and grasses, perennial forbs and grasses, shrubs, trees, litter and bare ground. To assist interpretation and to provide a measure of prediction confidence, we also produced spatiotemporal-explicit, pixel-level estimates of uncertainty. We evaluated the model with 5,780 on-the-ground vegetation plots removed from the training data. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean squared error. Evaluation with additional datasets that were not part of the training dataset, and that varied in geographic range, method of collection, scope and size, revealed similar metrics. Model performance increased across all functional groups compared to the previously produced fractional product. The advancements achieved with the new rangeland fractional cover product expand the management toolbox with improved predictions of fractional cover and pixel-level uncertainty. The new product is available on the Rangeland Analysis Platform (https://rangelands.app/), an interactive web application that tracks rangeland vegetation through time. This product is intended to be used alongside local on-the-ground data, expert knowledge, land use history, scientific literature and other sources of information when making interpretations. When being used to inform decision-making, remotely sensed products should be evaluated and utilized according to the context of the decision and not be used in isolation.
KW - conservation
KW - convolutional neural network
KW - grassland
KW - machine learning
KW - monitoring
KW - rangeland management
KW - remote sensing
KW - temporal convolutional network
UR - http://www.scopus.com/inward/record.url?scp=85100724234&partnerID=8YFLogxK
U2 - 10.1111/2041-210X.13564
DO - 10.1111/2041-210X.13564
M3 - Article
AN - SCOPUS:85100724234
SN - 2041-210X
VL - 12
SP - 841
EP - 849
JO - Methods in Ecology and Evolution
JF - Methods in Ecology and Evolution
IS - 5
ER -