In situ measurements and modeling of reactive trace gases in a small biomass burning plume

M. Müller, B. Anderson, A. Beyersdorf, J. H. Crawford, G. Diskin, P. Eichler, A. Fried, F. N. Keutsch, T. Mikoviny, K. L. Thornhill, J. G. Walega, A. J. Weinheimer, M. Yang, R. Yokelson, A. Wisthaler

Research output: Contribution to journalArticlepeer-review

Abstract

An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone/propanal, acetic acid/glycolaldehyde and maleic acid/maleic anhydride (tentatively identified) were found to be the main NMOGs to increase during one hour of atmospheric plume processing, with the model being unable to capture the observed increase. A mass balance analysis suggests that about 50 % of the aerosol mass formed in the downwind plume is organic in nature.

Original languageEnglish
Pages (from-to)31501-31536
Number of pages36
JournalAtmospheric Chemistry and Physics Discussions
Volume15
Issue number21
DOIs
StatePublished - Nov 10 2015

Fingerprint

Dive into the research topics of 'In situ measurements and modeling of reactive trace gases in a small biomass burning plume'. Together they form a unique fingerprint.

Cite this