TY - JOUR
T1 - In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin
T2 - Functions of DauP, DauK, and DoxA
AU - Dickens, Michael L.
AU - Priestley, Nigel D.
AU - Strohl, William R.
PY - 1997
Y1 - 1997
N2 - We recently determined the function of the gene product of Streptomyces sp. strain C5 doxA, a cytochrome P-450-like protein, to be daunorubicin C-14 hydroxylase (M. L. Dickens and W. R. Strohl, J. Bacteriol. 178: 3389-3395, 1996). In the present study, we show that DoxA also catalyzes the hydroxylation of 13-deoxycarminomycin and 13-deoxydaunorubicin to 13- dihydrocarminomycin and 13-dihydrodaunorubicin, respectively, as well as oxidizing the 13-dihydro-anthracyclines to their respective 13-keto forms. The Streptomyces sp. strain C5 dauP gene product also was shown unequivocally to remove the carbomethoxy group of the ε-rhodomycinone-glycoside (rhodomycin D) to form 10-carboxy-13-deoxycarminomycin. Additionally, Streptomyces sp. strain C5 DauK was found to methylate the anthracyclines rhodomycin D, 10-carboxy-13-deoxycarminomycin, and 13-deoxy-carminomycin, at the 4-hydroxyl position, indicating a broader substrate specificity than was previously known. The products of Streptomyces sp. strain C5 doxA, dauK, and dauP were sufficient and necessary to confer on Streptomyces lividans TK24 the ability to convert rhodomycin D, the first glycoside in daunorubicin and doxorubicin biosynthesis, to doxorubicin.
AB - We recently determined the function of the gene product of Streptomyces sp. strain C5 doxA, a cytochrome P-450-like protein, to be daunorubicin C-14 hydroxylase (M. L. Dickens and W. R. Strohl, J. Bacteriol. 178: 3389-3395, 1996). In the present study, we show that DoxA also catalyzes the hydroxylation of 13-deoxycarminomycin and 13-deoxydaunorubicin to 13- dihydrocarminomycin and 13-dihydrodaunorubicin, respectively, as well as oxidizing the 13-dihydro-anthracyclines to their respective 13-keto forms. The Streptomyces sp. strain C5 dauP gene product also was shown unequivocally to remove the carbomethoxy group of the ε-rhodomycinone-glycoside (rhodomycin D) to form 10-carboxy-13-deoxycarminomycin. Additionally, Streptomyces sp. strain C5 DauK was found to methylate the anthracyclines rhodomycin D, 10-carboxy-13-deoxycarminomycin, and 13-deoxy-carminomycin, at the 4-hydroxyl position, indicating a broader substrate specificity than was previously known. The products of Streptomyces sp. strain C5 doxA, dauK, and dauP were sufficient and necessary to confer on Streptomyces lividans TK24 the ability to convert rhodomycin D, the first glycoside in daunorubicin and doxorubicin biosynthesis, to doxorubicin.
UR - http://www.scopus.com/inward/record.url?scp=0030901366&partnerID=8YFLogxK
U2 - 10.1128/jb.179.8.2641-2650.1997
DO - 10.1128/jb.179.8.2641-2650.1997
M3 - Article
C2 - 9098063
AN - SCOPUS:0030901366
SN - 0021-9193
VL - 179
SP - 2641
EP - 2650
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 8
ER -