Abstract
Household heating using wood stoves is common practice in many rural areas of the United States (US) and can lead to elevated concentrations of indoor fine particulate matter (PM2.5). We collected 6-day measures of indoor PM2.5 during the winter and evaluated household and stove-use characteristics in homes at three rural and diverse study sites. The median indoor PM2.5 concentration across all homes was 19 µg/m3, with higher concentrations in Alaska (median = 30, minimum = 4, maximum = 200, n = 10) and Navajo Nation homes (median = 29, minimum = 3, maximum = 105, n = 23) compared with Montana homes (median = 16, minimum = 2, maximum = 139, n = 59). Households that had not cleaned the chimney within the past year had 65% higher geometric mean PM2.5 compared to those with chimney cleaned within 6 months (95% confidence interval [CI]: −1, 170). Based on a novel wood stove grading method, homes with low-quality and medium-quality stoves had substantially higher PM2.5 compared to homes with higher-quality stoves (186% higher [95% CI: 32, 519] and 161% higher; [95% CI:27, 434], respectively). Our findings highlight the need for, and complex nature of, regionally appropriate interventions to reduce indoor air pollution in rural wood-burning regions. Higher-quality stoves and behavioral practices such as regular chimney cleaning may help improve indoor air quality in such homes.
Original language | English |
---|---|
Pages (from-to) | 1109-1124 |
Number of pages | 16 |
Journal | Indoor Air |
Volume | 31 |
Issue number | 4 |
DOIs | |
State | Published - Jul 2021 |
Keywords
- biomass burning
- indoor air pollution
- particulate matter
- rural health
- stove use
- wood stove