Abstract
Phosphorus (P) is an essential nutrient for living systems with emerging sustainability challenges related to supply uncertainty and aquatic eutrophication. However, its long-term temporal dynamics and subsequent effects on freshwater ecosystems are still unclear. Here, we quantify the P pathways across China over the past four centuries with a life cycle process-balanced model and evaluate the concomitant potential for eutrophication with a spatial resolution of 5 arc-minutes in 2012. We find that P cycling in China has been artificially intensified during this period to sustain the increasing population and its demand for animal protein-based diets, with continuous accumulations in inland waters and lands. In the past decade, China's international trade of P involves net exports of P chemicals and net imports of downstream crops, specifically soybeans from the United States, Brazil, and Argentina. The contribution of crop products to per capita food P demand, namely, the P directly consumed by humans, declined from over 98% before the 1950s to 76%in 2012, even though there was little change in per capita food P demand. Anthropogenic P losses to freshwater and their eutrophication potential clustered in wealthy coastal regions with dense populations. We estimate that Chinese P reserve depletion could be postponed for over 20 y by more efficient life cycle P management. Our results highlight the importance of closing the P cycle to achieve the cobenefits of P resource conservation and eutrophication mitigation in the world's most rapidly developing economy.
Original language | English |
---|---|
Pages (from-to) | 2609-2614 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 113 |
Issue number | 10 |
DOIs | |
State | Published - Mar 8 2016 |
Keywords
- Eutrophication
- Food production
- Industrial ecology
- Phosphorus cycling
- Sustainability