Abstract
Introduction of lake trout Salvelinus namaycush into a system can add a trophic level, potentially affecting organisms at lower trophic levels. Similar to many lakes and reservoirs in the western United States, lake trout were introduced into Yellowstone Lake, Wyoming. Previous studies showed that lake trout reduced the population and altered the size structure of native Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri in Yellowstone Lake, but we sought to determine the degree to which lake trout predation changed lower trophic levels. We predicted that the structure of lower trophic levels would change in conformance with trophic cascade theory because Yellowstone cutthroat trout consume zooplankton. We compared zooplankton and phytoplankton assemblages between the period when Yellowstone cutthroat trout were abundant and the period after they declined. As predicted by trophic cascade theory, zooplankton biomass shifted from being dominated by copepods before lake trout introduction to being dominated by cladocerans after lake trout introduction, with zooplankton body lengths 17% longer after introduction. Vertical water clarity increased by 1.6 m because of a twofold decrease in chlorophyll a and a three- to sevenfold decrease in phytoplankton biovolume. Thus, the introduction of lake trout and subsequent decline of Yellowstone cutthroat trout likely altered lower trophic levels in Yellowstone Lake. Trophic cascades may be common in western U.S. lakes and reservoirs where native salmonids are present and where lake trout have been introduced.
Original language | English |
---|---|
Pages (from-to) | 1536-1550 |
Number of pages | 15 |
Journal | Transactions of the American Fisheries Society |
Volume | 139 |
Issue number | 5 |
DOIs | |
State | Published - 2010 |