Irregular labelings of circulant graphs

Marcin Anholcer, Cory Palmer

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

We investigate the irregularity strength (s(G)) and total vertex irregularity strength (tvs(G)) of circulant graphs Cin(1,2,⋯, k) and prove that tvs(Cin(1,2,⋯,k))=n+2k/2k+1⌉, while s(Cin(1,2,⋯,k))=n+2k-1/2k⌉ except if either n=2k+1 or if k is odd and n≡2k+1(mod4k), then s(Cin(1,2,⋯,k))=n+2k- 12k⌉+1.

Original languageEnglish
Pages (from-to)3461-3466
Number of pages6
JournalDiscrete Mathematics
Volume312
Issue number23
DOIs
StatePublished - Dec 6 2012

Keywords

  • Circulant graph
  • Graph labeling
  • Graph weighting
  • Irregularity strength
  • Total vertex irregularity strength

Fingerprint

Dive into the research topics of 'Irregular labelings of circulant graphs'. Together they form a unique fingerprint.

Cite this