Abstract
We investigate the irregularity strength (s(G)) and total vertex irregularity strength (tvs(G)) of circulant graphs Cin(1,2,⋯, k) and prove that tvs(Cin(1,2,⋯,k))=n+2k/2k+1⌉, while s(Cin(1,2,⋯,k))=n+2k-1/2k⌉ except if either n=2k+1 or if k is odd and n≡2k+1(mod4k), then s(Cin(1,2,⋯,k))=n+2k- 12k⌉+1.
| Original language | English |
|---|---|
| Pages (from-to) | 3461-3466 |
| Number of pages | 6 |
| Journal | Discrete Mathematics |
| Volume | 312 |
| Issue number | 23 |
| DOIs | |
| State | Published - Dec 6 2012 |
Keywords
- Circulant graph
- Graph labeling
- Graph weighting
- Irregularity strength
- Total vertex irregularity strength