TY - JOUR
T1 - Irrelevance by inhibition
T2 - Learning, computation, and implications for schizophrenia
AU - Insel, Nathan
AU - Guerguiev, Jordan
AU - Richards, Blake A.
N1 - Publisher Copyright:
© 2018 Insel et al. http://creativecommons.org/licenses/by/4.0/.
PY - 2018/8
Y1 - 2018/8
N2 - Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment (“relevance”), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to “gate” both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.
AB - Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment (“relevance”), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to “gate” both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.
UR - http://www.scopus.com/inward/record.url?scp=85053074054&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1006315
DO - 10.1371/journal.pcbi.1006315
M3 - Article
C2 - 30067746
AN - SCOPUS:85053074054
SN - 1553-734X
VL - 14
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 8
M1 - e1006315
ER -