Latitudinal patterns in stabilizing density dependence of forest communities

Lisa Hülsmann, Ryan A. Chisholm, Liza Comita, Marco D. Visser, Melina de Souza Leite, Salomon Aguilar, Kristina J. Anderson-Teixeira, Norman A. Bourg, Warren Y. Brockelman, Sarayudh Bunyavejchewin, Nicolas Castaño, Chia Hao Chang-Yang, George B. Chuyong, Keith Clay, Stuart J. Davies, Alvaro Duque, Sisira Ediriweera, Corneille Ewango, Gregory S. Gilbert, Jan HolíkRobert W. Howe, Stephen P. Hubbell, Akira Itoh, Daniel J. Johnson, David Kenfack, Kamil Král, Andrew J. Larson, James A. Lutz, Jean Remy Makana, Yadvinder Malhi, Sean M. McMahon, William J. McShea, Mohizah Mohamad, Musalmah Nasardin, Anuttara Nathalang, Natalia Norden, Alexandre A. Oliveira, Renan Parmigiani, Rolando Perez, Richard P. Phillips, Nantachai Pongpattananurak, I. Fang Sun, Mark E. Swanson, Sylvester Tan, Duncan Thomas, Jill Thompson, Maria Uriarte, Amy T. Wolf, Tze Leong Yao, Jess K. Zimmerman, Daniel Zuleta, Florian Hartig

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

Original languageEnglish
Pages (from-to)564-571
Number of pages8
JournalNature
Volume627
Issue number8004
DOIs
StatePublished - Feb 28 2024

Keywords

  • Biodiversity
  • Forests
  • Geographic Mapping
  • Models, Biological
  • Species Specificity
  • Trees/classification
  • Tropical Climate

Fingerprint

Dive into the research topics of 'Latitudinal patterns in stabilizing density dependence of forest communities'. Together they form a unique fingerprint.

Cite this