Abstract
Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (N 2 O), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps. Here, we demonstrate that refuse piles created by LCA species Atta colombica in tropical rainforests of Costa Rica provide ideal conditions for extremely high rates of N 2 O production (high microbial biomass, potential denitrification enzyme activity, N content and anoxia) and may represent an unappreciated source of heterogeneity in tropical forest N 2 O emissions. Average instantaneous refuse pile N 2 O fluxes surpassed background emissions by more than three orders of magnitude (in some cases exceeding 80 000 mg N 2 O-N m 22 h 21 ) and generating fluxes comparable to or greater than those produced by engineered systems such as wastewater treatment tanks. Refuse-concentrating Atta species are ubiquitous in tropical forests, pastures and production ecosystems, and increase density strongly in response to disturbance. As such, LCA colonies may represent an unrecognized greenhouse gas point source throughout the Neotropics.
Original language | English |
---|---|
Article number | 20182504 |
Journal | Proceedings of the Royal Society B: Biological Sciences |
Volume | 286 |
Issue number | 1894 |
DOIs | |
State | Published - 2019 |
Keywords
- Atta colombica
- Denitrification
- Ecosystem engineers
- Lowland rainforest
- Nitrogen
- Waste management