Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland

Joel Brown, Joel Harper, Neil Humphrey

Research output: Contribution to journalArticlepeer-review

Abstract

Liquid water content (wetness) within glacier ice is known to strongly control ice viscosity and ice deformation processes. Little is known about wetness of ice on the outer flanks of the Greenland Ice Sheet, where a temperate layer of basal ice exists. This study integrates borehole and radar surveys collected in June 2012 to provide direct estimates of englacial ice wetness in the ablation zone of western Greenland. We estimate electromagnetic propagation velocity of the ice body by inverting reflection travel times from radar data. Our inversion is constrained by ice thickness measured in boreholes and by positioning of a temperate-cold ice boundary identified in boreholes. Electromagnetic propagation velocities are consistent with a depth-averaged wetness of ∼0.5-1.1 %. The inversion indicates that wetness within the ice varies from < 0.1 % in an upper cold layer to ∼2.9-4.6 % in a 130-150 m thick temperate layer located above the glacier bed. Such high wetness should yield high rates of shear strain, which need to be accounted for in glacial flow models that focus on the ablation zone of Greenland. This high wetness also needs to be accounted for when determining ice thickness from radar measurements.

Original languageEnglish
Pages (from-to)669-679
Number of pages11
JournalCryosphere
Volume11
Issue number1
DOIs
StatePublished - Mar 2 2017

Fingerprint

Dive into the research topics of 'Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland'. Together they form a unique fingerprint.

Cite this