Local topography increasingly influences the mass balance of a retreating cirque glacier

Caitlyn Florentine, Joel Harper, Daniel Fagre, Johnnie Moore, Erich Peitzsch

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Local topographically driven processes - such as wind drifting, avalanching, and shading - are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950-1960, 1960-2005, and 2005-2014 document average mass change rates during each period at -0.22 ± 0.12, -0.18 ± 0.05, and -0.10 ± 0.03 m w.e. yr-1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr-1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950-1960 by +1.20 ± 0.95 m w.e. yr-1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.

Original languageEnglish
Pages (from-to)2109-2122
Number of pages14
Issue number6
StatePublished - Jun 20 2018


Dive into the research topics of 'Local topography increasingly influences the mass balance of a retreating cirque glacier'. Together they form a unique fingerprint.

Cite this